Articles | Volume 15, issue 1
The Cryosphere, 15, 369–387, 2021
https://doi.org/10.5194/tc-15-369-2021
The Cryosphere, 15, 369–387, 2021
https://doi.org/10.5194/tc-15-369-2021

Research article 27 Jan 2021

Research article | 27 Jan 2021

Snow depth time series retrieval by time-lapse photography: Finnish and Italian case studies

Marco Bongio et al.

Related authors

Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro catchment
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-389,https://doi.org/10.5194/hess-2021-389, 2021
Preprint under review for HESS
Short summary
A local model of snow-firn dynamics and application to Colle Gnifetti site
Fabiola Banfi and Carlo De Michele
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-145,https://doi.org/10.5194/tc-2021-145, 2021
Preprint under review for TC
Short summary
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021,https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
A local model of snow-firn dynamics and application to Colle Gnifetti site
Fabiola Banfi and Carlo De Michele
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-357,https://doi.org/10.5194/tc-2020-357, 2021
Manuscript not accepted for further review
Short summary
Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator
Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan
Biogeosciences, 16, 223–240, https://doi.org/10.5194/bg-16-223-2019,https://doi.org/10.5194/bg-16-223-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021,https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021,https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021,https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021,https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021,https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary

Cited articles

Arslan, A. N., Tanis, C. M., Metsämäki, S., Aurela, M., Böttcher, K., Linkosalmi, M., and Peltoniemi, M.: Automated webcam monitoring of fractional snow cover in northern boreal conditions, Geosciences, 7, 55, https://doi.org/10.3390/geosciences7030055, 2017. 
Aurela, M., Linkosalmi, M., Tanis, C. M., Arslan, A. N., Rainne, J., Kolari, P., Böttcher, K., and Peltoniemi, M.: Phenological time lapse images from ground camera MC111 in Sodankylä, peatland Peatland, Version 2014–2019, Data set, Zenodo, https://doi.org/10.5281/zenodo.3724877, 2020. 
Avanzi, F., De Michele, C., Ghezzi, A., Jommi, C., and Pepe, M.: A processing–modeling routine to use SNOTEL hourly data in snowpack dynamic models, Adv. Water Resour., 73, 16–29, https://doi.org/10.1016/j.advwatres.2014.06.011, 2014. 
Avanzi, F., Yamaguchi, S., Hirashima, H., and De Michele, C.: Bulk volumetric liquid water content in a seasonal snowpack: modeling its dynamics in different climatic conditions, Adv. Water Resour., 86, 1–13, https://doi.org/10.1016/j.advwatres.2015.09.021, 2015. 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation, Remote Sens., 10, 765, https://doi.org/10.3390/rs10050765, 2018. 
Download
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.