Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3507-2021
https://doi.org/10.5194/tc-15-3507-2021
Research article
 | 
28 Jul 2021
Research article |  | 28 Jul 2021

Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core

Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer

Related authors

A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023,https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021,https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary

Cited articles

Aki, K. and Richards, P. G.: Quantitative Seismology, Quantitative Seismology, edited by: Aki, K. and Richards, P. G.. University Science Books, 2nd Edn., ISBN 0-935702-96-2, 704pp, 2002. a
Alley, R. B.: Fabrics in Polar Ice Sheets: Development and Prediction, Science, 240, 493–495, 1988. a
Alley, R. B.: Flow-Law Hypotheses for Ice-Sheet Modeling, J. Glaciol., 38, 245–256, 1992. a
Anandakrishnan, S., Fltzpatrick, J. J., Alley, R. B., Gow, A. J., and Meese, D. A.: Shear-Wave Detection of Asymmetric c-Axis Fabrics in the GISP2 Ice Core, Greenland, J. Glaciol., 40, 491–496, https://doi.org/10.3189/S0022143000012363, 1994. a
Azuma, N.: A Flow Law for Anisotropic Ice and Its Application to Ice Sheets, Earth Planet Sc. Lett., 128, 601–614, https://doi.org/10.1016/0012-821X(94)90173-2, 1994. a
Download
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Share