Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls
Hannah R. Field
Department of Geological and Environmental Sciences, Appalachian State
University, Boone, NC 28607, USA
School of Earth Sciences, The Ohio State University, Columbus, OH
43210, USA
William H. Armstrong
CORRESPONDING AUTHOR
Department of Geological and Environmental Sciences, Appalachian State
University, Boone, NC 28607, USA
Matthias Huss
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich,
Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL),
Birmensdorf, Switzerland
Department of Geosciences, University of Fribourg, Fribourg,
Switzerland
Related authors
No articles found.
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024, https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Short summary
We present an extensive ice thickness dataset from Jostedalsbreen ice cap that will serve as a baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 ± 22 m and an ice volume of 70.6 ±10.2 km3. Ice of less than 50 m thickness covers two narrow regions of Jostedalsbreen, and the ice cap is likely to separate into three parts in a warming climate.
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378, https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug.) and total precipitation (Oct.–Febr.). Our model can accurately predict glacier mass from 1961–2021 but struggles for extreme years (2022 and 2023).
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
EGUsphere, https://doi.org/10.5194/egusphere-2024-646, https://doi.org/10.5194/egusphere-2024-646, 2024
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice-bedrock interface. In 4 months of seismic records, we detect spatiotemporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modeling techniques. This low-velocity layer results from temporary water storage within the glacier.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Rebecca Gugerli, Nadine Salzmann, Matthias Huss, and Darin Desilets
The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, https://doi.org/10.5194/tc-13-3413-2019, 2019
Short summary
Short summary
The snow water equivalent (SWE) in high mountain regions is crucial for many applications. Yet its quantification remains difficult. We present autonomous daily SWE observations by a cosmic ray sensor (CRS) deployed on a Swiss glacier for two winter seasons. Combined with snow depth observations, we derive the daily bulk snow density. The validation with manual field observations and its measurement reliability show that the CRS is a promising device for high alpine cryospheric environments.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-178, https://doi.org/10.5194/tc-2019-178, 2019
Preprint withdrawn
Short summary
Short summary
Thick rock cover (or debris) disturbs the melt of many Alaskan glaciers. Yet the effect of debris on glacier thinning in Alaska has been overlooked. In three companion papers we assess the role of debris and ice flow on the thinning of Kennicott Glacier. In Part C we describe feedbacks contributing to rapid thinning under thick debris. Changes in debris thickness downglacier on Kennicott Glacier are manifested in the pattern of glacier thinning, ice dynamics, melt, and glacier surface features.
Leif S. Anderson, Robert S. Anderson, Pascal Buri, and William H. Armstrong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-174, https://doi.org/10.5194/tc-2019-174, 2019
Preprint withdrawn
Short summary
Short summary
Thick rock cover (or debris) disturbs the melt of many Alaskan glaciers. Yet the effect of debris on glacier thinning in Alaska has been overlooked. In three companion papers we assess the role of debris and ice flow on the thinning of Kennicott Glacier. In Part A, we report measurements from the glacier surface. We measured surface debris thickness, melt under debris, and the rate of ice cliff backwasting. These data allow for further studies linking debris to glacier shrinkage in Alaska.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Kathrin Naegeli, Matthias Huss, and Martin Hoelzle
The Cryosphere, 13, 397–412, https://doi.org/10.5194/tc-13-397-2019, https://doi.org/10.5194/tc-13-397-2019, 2019
Short summary
Short summary
The paper investigates the temporal changes of bare-ice glacier surface albedo in the Swiss Alps between 1999 and 2016 from a regional to local scale using satellite data. Significant negative trends were found in the lowermost elevations and margins of the ablation zones. Although significant changes of glacier ice albedo are only present over a limited area, we emphasize that albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future.
Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison
The Cryosphere, 13, 325–350, https://doi.org/10.5194/tc-13-325-2019, https://doi.org/10.5194/tc-13-325-2019, 2019
Short summary
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Vanessa Round, Silvan Leinss, Matthias Huss, Christoph Haemmig, and Irena Hajnsek
The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, https://doi.org/10.5194/tc-11-723-2017, 2017
Short summary
Short summary
Recent surging of Kyagar Glacier (Karakoram) caused a hazardous ice-dammed lake to form and burst in 2015 and 2016. We use remotely sensed glacier surface velocities and surface elevation to observe dramatic changes in speed and mass distribution during the surge. The surge was hydrologically controlled with rapid summer onset and dramatic termination following lake outburst. Since the surge, the potential outburst hazard has remained high, and continued remote monitoring is crucial.
Mauro Fischer, Matthias Huss, Mario Kummert, and Martin Hoelzle
The Cryosphere, 10, 1279–1295, https://doi.org/10.5194/tc-10-1279-2016, https://doi.org/10.5194/tc-10-1279-2016, 2016
Short summary
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.
James S. Douglas, Matthias Huss, Darrel A. Swift, Julie M. Jones, and Franco Salerno
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-116, https://doi.org/10.5194/tc-2016-116, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Glacier behaviour in high-mountain Asia is different from other regions due to debris cover and ice stagnation. This study incorporates these factors into a glacio-hydrological model for the first time at the Khumbu Glacier, Nepal. We show that including debris provides a more realistic representation of the Khumbu Glacier than in previous runoff models, and that changes to the debris surface significantly influence glacier and runoff evolution, with impacts on downstream water resources.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, https://doi.org/10.5194/tc-9-525-2015, 2015
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
H. Machguth and M. Huss
The Cryosphere, 8, 1741–1755, https://doi.org/10.5194/tc-8-1741-2014, https://doi.org/10.5194/tc-8-1741-2014, 2014
M. Huss and D. Farinotti
The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014, https://doi.org/10.5194/tc-8-1261-2014, 2014
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
D. Farinotti and M. Huss
The Cryosphere, 7, 1707–1720, https://doi.org/10.5194/tc-7-1707-2013, https://doi.org/10.5194/tc-7-1707-2013, 2013
D. Finger, A. Hugentobler, M. Huss, A. Voinesco, H. Wernli, D. Fischer, E. Weber, P.-Y. Jeannin, M. Kauzlaric, A. Wirz, T. Vennemann, F. Hüsler, B. Schädler, and R. Weingartner
Hydrol. Earth Syst. Sci., 17, 3261–3277, https://doi.org/10.5194/hess-17-3261-2013, https://doi.org/10.5194/hess-17-3261-2013, 2013
M. Zemp, E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, P. C. Joerg, P. Jansson, B. Hynek, A. Fischer, H. Escher-Vetter, H. Elvehøy, and L. M. Andreassen
The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, https://doi.org/10.5194/tc-7-1227-2013, 2013
M. Huss
The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, https://doi.org/10.5194/tc-7-877-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Glacier Hydrology
Modeling saline-fluid flow through subglacial channels
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast and Southwest Greenland
Hydrological response of Andean catchments to recent glacier mass loss
Characterizing sub-glacial hydrology using radar simulations
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
A conceptual model for glacial lake bathymetric distribution
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 1: Steady states and friction laws
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 2: A dynamic viscoelastic model
The impact of surface melt rate and catchment characteristics on Greenland Ice Sheet moulin inputs
Evaporation over a glacial lake in Antarctica
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Accumulation of legacy fallout radionuclides in cryoconite on Isfallsglaciären (Arctic Sweden) and their downstream spatial distribution
Drainage of an ice-dammed lake through a supraglacial stream: hydraulics and thermodynamics
Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Geophysical constraints on the properties of a subglacial lake in northwest Greenland
Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard
Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period 1998–2019
An analysis of instabilities and limit cycles in glacier-dammed reservoirs
Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary
Short summary
Detailed glacial lake bathymetry surveys are essential for accurate glacial lake outburst flood (GLOF) simulation and risk assessment. We creatively developed a conceptual model for glacial lake bathymetric distribution. The basic idea is that the statistical glacial lake volume–area curves conform to a power-law relationship indicating that the idealized geometric shape of the glacial lake basin should be hemispheres or cones.
Christian Schoof
The Cryosphere, 17, 4797–4815, https://doi.org/10.5194/tc-17-4797-2023, https://doi.org/10.5194/tc-17-4797-2023, 2023
Short summary
Short summary
Computational models that seek to predict the future behaviour of ice sheets and glaciers typically rely on being able to compute the rate at which a glacier slides over its bed. In this paper, I show that the degree to which the glacier bed is
hydraulically connected(how easily water can flow along the glacier bed) plays a central role in determining how fast ice can slide.
Christian Schoof
The Cryosphere, 17, 4817–4836, https://doi.org/10.5194/tc-17-4817-2023, https://doi.org/10.5194/tc-17-4817-2023, 2023
Short summary
Short summary
The subglacial drainage of meltwater plays a major role in regulating glacier and ice sheet flow. In this paper, I construct and solve a mathematical model that describes how connections are made within the subglacial drainage system. This will aid future efforts to predict glacier response to surface melt supply.
Tim Hill and Christine F. Dow
The Cryosphere, 17, 2607–2624, https://doi.org/10.5194/tc-17-2607-2023, https://doi.org/10.5194/tc-17-2607-2023, 2023
Short summary
Short summary
Water flow across the surface of the Greenland Ice Sheet controls the rate of water flow to the glacier bed. Here, we simulate surface water flow for a small catchment on the southwestern Greenland Ice Sheet. Our simulations predict significant differences in the form of surface water flow in high and low melt years depending on the rate and intensity of surface melt. These model outputs will be important in future work assessing the impact of surface water flow on subglacial water pressure.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Fabiola Banfi and Carlo De Michele
The Cryosphere, 16, 1031–1056, https://doi.org/10.5194/tc-16-1031-2022, https://doi.org/10.5194/tc-16-1031-2022, 2022
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modelling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between April and September since higher temperatures protect snow from erosion. We also compared modelled and observed firn density, obtaining a satisfying agreement.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Chloé Scholzen, Thomas V. Schuler, and Adrien Gilbert
The Cryosphere, 15, 2719–2738, https://doi.org/10.5194/tc-15-2719-2021, https://doi.org/10.5194/tc-15-2719-2021, 2021
Short summary
Short summary
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to investigate how different processes of surface-to-bed meltwater transfer affect subglacial hydraulic conditions. The latter are important for the sliding motion of glaciers, which in some cases exhibit huge variations. Our findings indicate that the glaciers in our study area undergo substantial sliding because water is poorly evacuated from their base, with limited influence from the surface hydrology.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Christian Schoof
The Cryosphere, 14, 3175–3194, https://doi.org/10.5194/tc-14-3175-2020, https://doi.org/10.5194/tc-14-3175-2020, 2020
Short summary
Short summary
Glacier lake outburst floods are major glacial hazards in which ice-dammed reservoirs rapidly drain, often in a recurring fashion. The main flood phase typically involves a growing channel being eroded into ice by water flow. What is poorly understood is how that channel first comes into being. In this paper, I investigate how an under-ice drainage system composed of small, naturally occurring voids can turn into a channel and how this can explain the cyclical behaviour of outburst floods.
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Short summary
This paper models how water flows beneath a large Greenlandic glacier and how the structure of the drainage system it flows in changes over time. We also look at how this affects melting driven by freshwater plumes at the glacier front, as well as the implications for glacier flow and sea-level rise. We find an active drainage system and plumes exist year round, contradicting previous assumptions and suggesting more melting may not slow the glacier down, unlike at other sites in Greenland.
Camilo Rada and Christian Schoof
The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, https://doi.org/10.5194/tc-12-2609-2018, 2018
Short summary
Short summary
We analyse a large glacier borehole pressure dataset and provide a holistic view of the observations, suggesting a consistent picture of the evolution of the subglacial drainage system. Some aspects are consistent with the established understanding and others ones are not. We propose that most of the inconsistencies arise from the capacity of some areas of the bed to become hydraulically isolated. We present an adaptation of an existing drainage model that incorporates this phenomena.
Cited articles
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump,
S. E.: Glaciation of alpine valleys: The glacier – debris-covered glacier
– rock glacier continuum, Geomorphology, 311, 127–142,
https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Arendt, A., Walsh, J., and Harrison, W.: Changes of Glaciers and Climate in
Northwestern North America during the Late Twentieth Century, J. Climate,
22, 4117–4134, https://doi.org/10.1175/2009JCLI2784.1, 2009.
Armstrong, W. H.: proglacialLakes, available at: https://github.com/armstrwa/proglacialLakes, last access: 13 July 2021.
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: A review of volume-area scaling
of glaciers, Rev. Geophys., 53, 95–140, 2015.
Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Guo, W., Liu, S.,
Immerzeel, W., and Shrestha, B.: The glaciers of the Hindu Kush Himalayas:
current status and observed changes from the 1980s to 2010, Int. J. Water
Resour. Dev., 31, 161–173, 2015.
Baker, M. A., Arp, C. D., Goodman, K. J., Marcarelli, A. M., and Wurtsbaugh,
W. A.: Stream-lake interaction: understanding coupled hydro-ecological
systems, in: Stream Ecosystems in a Changing Environment, 321–348,
Academic Press, London, UK; San Diego, USA; Cambridge, USA; Oxford, UK, 2016.
Benn, D. I., Hulton, N. R. J., and Mottram, R. H.: “Calving laws”, “sliding
laws” and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130,
https://doi.org/10.3189/172756407782871161, 2007.
Bieniek, P. A., Bhatt, U. S., Walsh, J. E., Rupp, T. S., Zhang, J., Krieger,
J. R., and Lader, R.: Dynamical downscaling of ERA-Interim temperature and
precipitation for Alaska, J. Appl. Meteorol. Climatol., 55, 635–654,
2016.
Björnsson, H.: Understanding jökulhlaups: From tale to theory, J.
Glaciol., 56, 1002–1010, https://doi.org/10.3189/002214311796406086, 2010.
Bogen, J., Xu, M., and Kennie, P.: The impact of pro-glacial lakes on
downstream sediment delivery in Norway, Earth Surf. Process. Landf.,
40, 942–952, 2015.
Brun, F., Treichler, D., Shean, D., and Immerzeel, W. W.: Limited
Contribution of Glacier Mass Loss to the Recent Increase in Tibetan Plateau
Lake Volume, Front. Earth Sci., 8, 1–14,
https://doi.org/10.3389/feart.2020.582060, 2020.
Buckel, J., Otto, J.-C., Prasicek, G., and Keuschnig, M.: Glacial lakes in
Austria-Distribution and formation since the Little Ice Age, Glob. Planet.
Change, 164, 39–51, 2018.
Canas, D., Chan, W. M., Chiu, A., Jung-Ritchie, L., Leung, M., Pillay, L.
and Waltham, B.: Potential Environmental Effects of Expanding Lake
Jökulsárlón in Response to Melting of
Breiðamerkurjökull, Iceland, Cartogr. Int. J. Geogr. Inf.
Geovisualization, 50, 204–213, 2015.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal
impacts of glacier outburst floods, Glob. Planet. Change, 144, 1–16,
https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Che, Y., Zhang, M., Li, Z., Li, H., Wang, S., Sun, M., and Zha, S.: Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014, Quaternary Int., 454, 68–84, https://doi.org/10.1016/j.quaint.2017.07.003, 2017.
Chernos, M., Koppes, M., and Moore, R. D.: Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013, The Cryosphere, 10, 87–102, https://doi.org/10.5194/tc-10-87-2016, 2016.
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015.
Cook, S. and Swift, D.: Subglacial basins: Their origin and importance in
glacial systems and landscapes, Earth-Sci. Rev., 115, 332–372,
https://doi.org/10.1016/j.earscirev.2012.09.009, 2012.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic
Press, London, UK; San Diego, USA; Cambridge, USA; Oxford, UK, 2010.
Daly, C., Taylor, G. H., and Gibson, W. P.: The PRISM approach to mapping precipitation and temperature. In Proceedings 10th AMS Conference on Applied Climatology, American Meteorological Society, 20–23 October, Reno, NV, 10–12, 1997.
Danielson, J. J. and Gesch, D. B.:
Global multi-resolution terrain elevation data 2010 (GMTED2010):
U.S. Geological Survey Open-File Report 2011-1073, available at: http://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf (last access: 13 July 2021), 26 pp., 2011.
Debnath, M., Syiemlieh, H. J., Sharma, M. C., Kumar, R., Chowdhury, A., and
Lal, U.: Glacial lake dynamics and lake surface temperature assessment along
the Kangchengayo-Pauhunri Massif, Sikkim Himalaya, 1988–2014, Remote Sens.
Appl. Soc. Environ., 9, 26–41, 2018.
Dorava, J. M. and Milner, A. M.: Role of lake regulation on glacier-fed
rivers in enhancing salmon productivity: the Cook Inlet watershed,
south-central Alaska, USA, Hydrol. Process., 14, 3149–3159, 2000.
Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H., and Huggel, C.: 70
years of lake evolution and glacial lake outburst floods in the Cordillera
Blanca (Peru) and implications for the future, Geomorphology, 365, 107178, https://doi.org/10.1016/j.geomorph.2020.107178, 2020.
Falatkova, K., Šobr, M., Neureiter, A., Schöner, W., Janský, B., Häusler, H., Engel, Z., and Beneš, V.: Development of proglacial lakes and evaluation of related outburst susceptibility at the Adygine ice-debris complex, northern Tien Shan, Earth Surf. Dynam., 7, 301–320, https://doi.org/10.5194/esurf-7-301-2019, 2019.
Farías-Barahona, D., Wilson, R., Bravo, C., Vivero, S., Caro, A., Shaw,
T. E., Casassa, G., Ayala, Á., Mejías, A., Harrison, S., Glasser,
N. F., McPhee, J., Wündrich, O., and Braun, M. H.: A near 90-year record
of the evolution of El Morado Glacier and its proglacial lake, Central
Chilean Andes, J. Glaciol., 66, 846–860, https://doi.org/10.1017/jog.2020.52,
2020.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173, 2019a.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J. M., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth [data set], ETH Zürich, https://doi.org/10.3929/ethz-b-000315707, 2019b.
Farinotti, D., Round, V., Huss, M., Compagno, L., and Zekollari, H.: Large
hydropower and water-storage potential in future glacier-free basins,
Nature, 575, 341–344, 2019c.
Fellman, J. B., Nagorski, S., Pyare, S., Vermilyea, A. W., Scott, D., and
Hood, E.: Stream temperature response to variable glacier coverage in
coastal watersheds of Southeast Alaska, Hydrol. Process., 28, 2062–2073,
2014.
Field, H. R. and Armstrong, W. H.: Greater Gulf of Alaska ice-marginal lake perimeters over 1984–2018 [data set], Arctic Data Center, https://doi.org/10.18739/A27659G66, 2021.
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial
lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009,
Glob. Planet. Change, 75, 47–55, 2011.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A.,
Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., and Kaser, G.: A reconciled
estimate of glacier contributions to sea level rise: 2003 to 2009, Science, 340, 852–857, 2013.
Haeberli, W., Linsbauer, A., Cochachin, A., Salazar, C., and Fischer, U. H.:
On the morphological characteristics of overdeepenings in high-mountain
glacier beds, Earth Surf. Process. Landf., 41, 1980–1990,
https://doi.org/10.1002/esp.3966, 2016.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3. 10
Dataset, Int. J. Climatol., 34, 623–642, 2014.
Helsel, D. R. and Hirsch, R. M.: Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3, U.S. Geological Survey, 522 pp., Reston, USA, 2002.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., and Brun, F.: Accelerated global
glacier mass loss in the early twenty-first century, Nature, 592,
726–731, 2021.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level rise, Front. Earth Sci., 3, 1–22, https://doi.org/10.3389/feart.2015.00054, 2015.
Jacquet, J., McCoy, S. W., McGrath, D., Nimick, D. A., Fahey, M.,
O'Kuinghttons, J., Friesen, B. A., and Leidich, J.: Hydrologic and geomorphic
changes resulting from episodic glacial lake outburst floods: Rio Colonia,
Patagonia, Chile, Geophys. Res. Lett., 44, 854–864, 2017.
Jiskoot, H., Curran, C. J., Tessler, D. L., and Shenton, L. R.: Changes in
Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry,
tributary detachment, length–slope and area–aspect relations, Ann.
Glaciol., 50, 133–143, https://doi.org/10.3189/172756410790595796, 2009.
Jóhannesson, T., Raymond, C. F., and Waddington, E. D.: A Simple Method for Determining the Response Time of Glaciers, in: Glacier Fluctuations and Climatic Change, edited by: Oerlemans, J., Glaciology and Quaternary Geology, vol. 6, Springer, Dordrecht, https://doi.org/10.1007/978-94-015-7823-3_22, 1989.
Kauman, D. S. and Manley, W. F.: Pleistocene Maximum and Late Wisconsinan
glacier extents across Alaska, U.S.A., Dev. Quat. Sci., 2, 9–27,
https://doi.org/10.1016/S1571-0866(04)80182-9, 2004.
Khadka, N., Zhang, G., and Thakuri, S.: Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017), Remote Sens., 10, 1913, https://doi.org/10.3390/rs10121913, 2018.
King, O., Bhattacharya, A., Bhambri, R., and Bolch, T.: Glacial lakes
exacerbate Himalayan glacier mass loss, Sci. Rep.-UK, 9, 18145,
https://doi.org/10.1038/s41598-019-53733-x, 2019.
Larsen, C. F., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J., and
Kienholz, C.: Surface melt dominates Alaska glacier mass balance, Geophys.
Res. Lett., 42, 5902–5908, 2015.
Lea, J. M.: The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface margins, Earth Surf. Dynam., 6, 551–561, https://doi.org/10.5194/esurf-6-551-2018, 2018.
Leonawicz, M., Lindgren, M., Kurkowski, T., Rupp, S., and Walsh, J.: Historical Monthly and Derived Temperature Products Downscaled from CRU TS data via the delta method – 2 km, available at: http://ckan.snap.uaf.edu/dataset/historical-monthly-and-derived-temperature-products-downscaled-from-cru-ts-data-via-the-delta-m, last access: 13 July 2021a.
Leonawicz, M., Lindgren, M., Kurkowski, T., Rupp, S., and Walsh, J.: Historical Monthly and Derived Precipitation Products Downscaled from CRU TS data via the delta method – 2 km, available at: http://ckan.snap.uaf.edu/dataset/historical-monthly-and-derived-precipitation-products-downscaled-from-cru-ts-data-via-the-delta, last access: 13 July 2021b.
Magnin, F., Haeberli, W., Linsbauer, A., Deline, P., and Ravanel, L.:
Estimating glacier-bed overdeepenings as possible sites of future lakes in
the de-glaciating Mont Blanc massif (Western European Alps), Geomorphology,
350, 1–21, 2020.
McGrath, D., Sass, L., O'Neel, S., Arendt, A., and Kienholz, C.: Hypsometric
control on glacier mass balance sensitivity in Alaska and northwest Canada,
Earth's Futur., 5, 324–336, 2017.
McNeil, C., O'Neel, S., Loso, M., Pelto, M., Sass, L., Baker, E. H., and
Campbell, S.: Explaining mass balance and retreat dichotomies at Taku and
Lemon Creek Glaciers, Alaska, J. Glaciol., 66, 530–542, https://doi.org/10.1017/jog.2020.22, 2020.
Menounos, B., Hugonnet, R., Shean, D., Gardner, A., Howat, I., Berthier, E., Pelto, B., Tennant, C., Shea, J., Noh, M., Brun, F., and Dehecq, A.: Heterogeneous changes in western North American glaciers linked to decadal variability in zonal wind strength, Geophys. Res. Lett., 46, 200–209, https://doi.org/10.1029/2018GL080942, 2019.
Nye, J. F.: Water Flow in Glaciers: Jökulhlaups, Tunnels and Veins, J.
Glaciol., 17, 181–207, https://doi.org/10.3189/S002214300001354X, 1976.
O'Neel, S., McNeil, C., Sass, L. C., Florentine, C., Baker, E. H., Peitzsch,
E., McGrath, D., Fountain, A. G., and Fagre, D.: Reanalysis of the US
Geological Survey Benchmark Glaciers: long-term insight into climate forcing
of glacier mass balance, J. Glaciol., 65, 850–866, 2019.
Otto, J. C.: Proglacial Lakes in High Mountain Environments, in: Geomorphology of Proglacial Systems. Geography of the Physical Environment, edited by: Heckmann, T. and Morche, D., Springer, Cham, https://doi.org/10.1007/978-3-319-94184-4_14, 2019.
Péwé, T. L.: Quaternary geology of Alaska: U.S. Geological Survey Professional Paper 835, 145 pp., Reston, USA,
https://doi.org/10.3133/pp835, 1975.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., and Kienholz, C.: The Randolph
Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol.,
60, 537–552, 2014.
Post, A. and Mayo, L. R.: Glacier dammed lakes and outburst floods in
Alaska, US Geological Survey, Washington, D.C., 1971.
Ratajczak, Z., Carpenter, S. R., Ives, A. R., Kucharik, C. J., Ramiadantsoa,
T., Stegner, M. A., Williams, J. W., Zhang, J., and Turner, M. G.: Abrupt
Change in Ecological Systems: Inference and Diagnosis, Trends Ecol. Evol.,
33, 513–526, https://doi.org/10.1016/j.tree.2018.04.013, 2018.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Digital Media, Colorado, USA, https://doi.org/10.7265/N5-RGI-60, 2017.
Roberts, M. J., Tweed, F. S., Russell, A. J., Knudsen, Ó., and Harris, T.
D.: Hydrologic and geomorphic effects of temporary ice-dammed lake formation
during jökulhlaups, Earth Surf. Process. Landf., 28, 723–737, 2003.
Robinson, C. T. and Matthaei, S.: Hydrological heterogeneity of an alpine
stream–lake network in Switzerland, Hydrol. Process. An Int. J., 21,
3146–3154, 2007.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Chang.,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Shukla, A., Garg, P. K., and Srivastava, S.: Evolution of glacial and
high-altitude lakes in the Sikkim, Eastern Himalaya over the past four
decades (1975–2017), Front. Environ. Sci., 6, 1–19, https://doi.org/10.3389/fenvs.2018.00081, 2018.
Song, C., Sheng, Y., Wang, J., Ke, L., Madson, A., and Nie, Y.: Heterogeneous
glacial lake changes and links of lake expansions to the rapid thinning of
adjacent glacier termini in the Himalayas, Geomorphology, 280, 30–38, 2017.
Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., and Shahgedanova,
M.: Recent glacier retreat in the Caucasus Mountains, Russia, and associated
increase in supraglacial debris cover and supra-/proglacial lake
development, Ann. Glaciol., 46, 195–203, https://doi.org/10.3189/172756407782871468,
2007.
Sugiyama, S., Minowa, M., Sakakibara, D., Skvarca, P., Sawagaki, T., Ohashi,
Y., Naito, N., and Chikita, K.: Thermal structure of proglacial lakes in
Patagonia, J. Geophys. Res.-Earth Surf., 121, 2270–2286,
https://doi.org/10.1002/2016JF004084, 2016.
Sutherland, J. L., Carrivick, J. L., Gandy, N., Shulmeister, J., Quincey, D. J., and Cornford, S. L.: Proglacial lakes control glacier geometry and behavior during recession. Geophys. Res. Lett., 47, e2020GL088865, https://doi.org/10.1029/2020GL088865, 2020.
Treichler, D., Kääb, A., Salzmann, N., and Xu, C.-Y.: Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes, The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, 2019.
Truffer, M. and Motyka, R. J.: Where glaciers meet water: Subaqueous melt
and its relevance to glaciers in various settings, Rev. Geophys., 54,
220–239, 2016.
Trüssel, B. L., Truffer, M., Hock, R., Motyka, R. J., Huss, M., and
Zhang, J.: Runaway thinning of the low-elevation Yakutat Glacier, Alaska,
and its sensitivity to climate change, J. Glaciol., 61, 65–75,
https://doi.org/10.3189/2015JoG14J125, 2015.
Tsutaki, S., Nishimura, D., Yoshizawa, T., and Sugiyama, S.: Changes in
glacier dynamics under the influence of proglacial lake formation in
Rhonegletscher, Switzerland, Ann. Glaciol., 52, 31–36,
https://doi.org/10.3189/172756411797252194, 2011.
Tweed, F. S. and Carrivick, J. L.: Deglaciation and proglacial lakes, Geol.
Today, 31, 96–102, https://doi.org/10.1111/gto.12094, 2015.
Tweed, F. S. and Russell, A. J.: Controls on the formation and sudden
drainage of glacier-impounded lakes: implications for jökulhlaup
characteristics, Prog. Phys. Geogr., 23, 79–110, 1999.
Wang, W., Xiang, Y., Gao, Y., Lu, A., and Yao, T.: Rapid expansion of glacial
lakes caused by climate and glacier retreat in the Central Himalayas,
Hydrol. Process., 29, 859–874, 2015.
Watson, C. S., Kargel, J. S., Shugar, D. H., Haritashya, U. K., Schiassi, E., and Furfaro, R.: Mass Loss From Calving in Himalayan Proglacial Lakes, Front. Earth Sci., 7, 342, https://doi.org/10.3389/feart.2019.00342, 2020.
Wilson, R., Glasser, N. F., Reynolds, J. M., Harrison, S., Anacona, P. I.,
Schaefer, M., and Shannon, S.: Glacial lakes of the Central and Patagonian
Andes, Glob. Planet. Change, 162, 275–291,
https://doi.org/10.1016/j.gloplacha.2018.01.004, 2018.
Wolfe, D. F. G., Kargel, J. S., and Leonard, G. J.: Glacier-dammed ice-marginal lakes of Alaska, in: Global Land Ice Measurements from Space, edited by: Kargel, J., Leonard, G., Bishop, M., Kääb, A., and Raup, B., Springer Praxis Books, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-79, 2014.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G.,
Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua,
L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Ove Hagen, J.,
Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V,
Portocarrero, C. A., Prinz, R., Sangewar, C. V, Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically
unprecedented global glacier decline in the early 21st century, J. Glaciol.,
61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., and Gärtner-Roer, I.:
Global glacier mass changes and their contributions to sea-level rise from
1961 to 2016, Nature, 568, 382–386, 2019.
Zhang, G., Bolch, T., Allen, S., Linsbauer, A., Chen, W., and Wang, W.:
Glacial lake evolution and glacier–lake interactions in the Poiqu River
basin, central Himalaya, 1964–2017, J. Glaciol., 65, 347–365,
https://doi.org/10.1017/jog.2019.13, 2019.
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding...