Articles | Volume 15, issue 7
The Cryosphere, 15, 3119–3128, 2021
The Cryosphere, 15, 3119–3128, 2021

Research article 06 Jul 2021

Research article | 06 Jul 2021

Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream

Ole Zeising and Angelika Humbert

Related authors

Basal melt of the southern Filchner Ice Shelf, Antarctica
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere Discuss.,,, 2021
Preprint under review for TC
Short summary
Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535,,, 2021
Short summary
Polarimetric radar reveals the spatial distribution of ice fabric at domes in East Antarctica
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere Discuss.,,, 2021
Preprint under review for TC
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Upstream flow effects revealed in the EastGRIP ice core using Monte Carlo inversion of a two-dimensional ice-flow model
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679,,, 2021
Short summary
Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019,,, 2021
Short summary
Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005,,, 2021
Short summary
Sensitivity of the Greenland surface mass and energy balance to uncertainties in key model parameters
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938,,, 2021
Short summary
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646,,, 2021
Short summary

Cited articles

Alley, R. B., Pollard, D., Parizek, B. R., Anandakrishnan, S., Pourpoint, M., Stevens, N. T., MacGregor, J. A., Christianson, K., Muto, A., and Holschuh, N.: Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 124, 97–115,, 2019. a
Beyer, S., Kleiner, T., Aizinger, V., Rückamp, M., and Humbert, A.: A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream, The Cryosphere, 12, 3931–3947,, 2018. a, b
Brennan, P. V., Lok, L. B., Nicholls, K., and Corr, H.: Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring, IET Radar Sonar Nav., 8, 776–786,, 2014. a, b
Christianson, K., Peters, L. E., Alley, R. B., Anandakrishnan, S., Jacobel, R. W., Riverman, K. L., Muto, A., and Keisling, B. A.: Dilatant till facilitates ice-stream flow in northeast Greenland, Earth Planet. Sc. Lett., 401, 57–69,, 2014. a, b
Dansgaard, W. and Johnsen, S.: A flow model and a time scale for the ice core from Camp Century, Greenland, J. Glaciol., 8, 215–223,, 1969. a
Short summary
Greenland’s largest ice stream – the Northeast Greenland Ice Stream (NEGIS) – extends far into the interior of the ice sheet. Basal meltwater acts as a lubricant for glaciers and sustains sliding. Hence, observations of basal melt rates are of high interest. We performed two time series of precise ground-based radar measurements in the upstream region of NEGIS and found high melt rates of 0.19 ± 0.04 m per year.