Articles | Volume 15, issue 5
The Cryosphere, 15, 2429–2450, 2021
https://doi.org/10.5194/tc-15-2429-2021
The Cryosphere, 15, 2429–2450, 2021
https://doi.org/10.5194/tc-15-2429-2021

Research article 04 Jun 2021

Research article | 04 Jun 2021

Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover

Robbie D. C. Mallett et al.

Related authors

Book review on: A Field Guide to Snow
Robbie D. C. Mallett
The Cryosphere, 15, 1453–1454, https://doi.org/10.5194/tc-15-1453-2021,https://doi.org/10.5194/tc-15-1453-2021, 2021
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020,https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020,https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021,https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021,https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery
Stephan Paul and Marcus Huntemann
The Cryosphere, 15, 1551–1565, https://doi.org/10.5194/tc-15-1551-2021,https://doi.org/10.5194/tc-15-1551-2021, 2021
Short summary
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning
Zhixiang Yin, Xiaodong Li, Yong Ge, Cheng Shang, Xinyan Li, Yun Du, and Feng Ling
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-363,https://doi.org/10.5194/tc-2020-363, 2021
Revised manuscript accepted for TC

Cited articles

Aaboe, S.: Copernicus Climate Data Records Sea Ice Edge and Sea Ice Type Product User Guide and Specification, Tech. rep., https://doi.org/10.24381/cds.29c46d83, 2020. a
Armitage, T. W. and Ridout, A. L.: Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge, Geophys. Res. Lett., 42, 6724–6731, https://doi.org/10.1002/2015GL064823, 2015. a
Barrett, A. P., Stroeve, J. C., and Serreze, M. C.: Arctic Ocean Precipitation From Atmospheric Reanalyses and Comparisons With North Pole Drifting Station Records, J. Geophys. Res.-Oceans, 125, 1–17, https://doi.org/10.1029/2019JC015415, 2020. a, b, c
Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hosseinmostafa, A. R., Jezek, K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.: Laboratory measurements of radar backscatter from bare and snow-covered saline ice sheets, Int. J. Remote Sens., 16, 851–876, https://doi.org/10.1080/01431169508954448, 1995. a
Belter, H. J., Krumpen, T., Hendricks, S., Hoelemann, J., Janout, M. A., Ricker, R., and Haas, C.: Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations, The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, 2020. a
Download
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.