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Abstract. Mean sea ice thickness is a sensitive indicator of
Arctic climate change and is in long-term decline despite sig-
nificant interannual variability. Current thickness estimations
from satellite radar altimeters employ a snow climatology
for converting range measurements to sea ice thickness, but
this introduces unrealistically low interannual variability and
trends. When the sea ice thickness in the period 2002–2018
is calculated using new snow data with more realistic vari-
ability and trends, we find mean sea ice thickness in four of
the seven marginal seas to be declining between 60 %–100 %
faster than when calculated with the conventional climatol-
ogy. When analysed as an aggregate area, the mean sea ice
thickness in the marginal seas is in statistically significant
decline for 6 of 7 winter months. This is observed despite a
76 % increase in interannual variability between the methods
in the same time period. On a seasonal timescale we find that
snow data exert an increasingly strong control on thickness
variability over the growth season, contributing 46 % in Oc-
tober but 70 % by April. Higher variability and faster decline
in the sea ice thickness of the marginal seas has wide impli-
cations for our understanding of the polar climate system and
our predictions for its change.

1 Introduction

Sea ice cover moderates the exchange of moisture, heat and
momentum between the atmosphere and the polar oceans, in-
fluencing regional ecosystems, hemispheric weather patterns
and global climate. Sea ice thickness (SIT) is a key charac-
teristic of the sea ice cover, as thicker sea ice weakens the
coupling between the ocean and atmosphere systems.

Thicker sea ice is more thermally insulating and limits
heat transfer from the ocean to the atmosphere in winter and
consequent thermodynamic growth (Petty et al., 2018a). SIT
also exerts control on sea ice dynamics and rheology (Tsama-
dos et al., 2013; Vella and Wettlaufer, 2008). The thickness
of sea ice during snow accumulation also dictates whether
the sea ice surface drops below the waterline, potentially in-
creasing thermodynamic sea ice growth through the forma-
tion of snow ice (Rösel et al., 2018). The impact of the end-
of-winter SIT distribution persists into the melt season with
thick sea ice decreasing the transmission of solar radiation
to the surface ocean and reducing the potential for in- and
under-ice primary productivity (Mundy et al., 2005; Katlein
et al., 2015). Finally, thick sea ice is far more likely to survive
the melt season, increasing the average age of Arctic sea ice.
Correct assimilation of ice thickness into models therefore
offers opportunities for prediction of the sea ice state on sea-
sonal timescales (Chevallier and Salas-Mélia, 2012; Block-
ley and Peterson, 2018; Schröder et al., 2019).
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The annual sea ice thickness distribution is highly spatially
variable, with a cover of thick multi-year ice in the Central
Arctic and a thinner, more seasonally variable cover of first-
year ice in the marginal seas. Regional sea ice thickness dis-
tributions are often characterised by the mean thickness, SIT.
As well as being a key parameter for the processes described
above, the value can be multiplied by the sea ice area to pro-
duce the sea ice volume, one of the most sensitive indicators
of Arctic climate change (Schweiger et al., 2019).

While continuous and consistent monitoring of pan-Arctic
SIT has not been achieved on a multi-decadal timescale, a
combination of different techniques has suggested a signifi-
cant decline in thickness since 1950 (Kwok, 2018; Stroeve
and Notz, 2018). Satellite altimeters using both radar and
lidar have provided a valuable record of changing sea ice
thickness but have often been limited for various reasons.
Some have been limited spatially by their orbital inclination
(e.g. the European Remote Sensing (ERS) satellites, Envisat,
AltiKa and Sentinel radar altimeters have operated up to only
81.5◦ N) and others in temporal coverage (e.g. ICESat was
operated in campaign mode rather than providing continu-
ous coverage). Two satellite altimeters currently offer contin-
uous and meaningfully pan-Arctic monitoring of the Arctic
sea ice: the ICESat-2 and CryoSat-2 altimeters. ICESat-2 has
been in operation since September 2018 and so far has doc-
umented only two winters of sea ice thickness (Kwok et al.,
2020).

Although the launch of the CryoSat-2 radar altimeter
(henceforth CS2) in 2010 allowed significant advances in
understanding the spatial distribution and interannual vari-
ability of pan-Arctic SIT (Laxon et al., 2013), a statistically
significant decreasing trend within the CS2 observational pe-
riod has not been detected for the Arctic as a whole. The
lack of certainty regarding any trend in SIT is in part due to
the various uncertainties associated with SIT retrieval from
radar altimetry (Ricker et al., 2014; Zygmuntowska et al.,
2014). Major contributors to these uncertainties are the rela-
tively large footprint of a radar pulse when compared to laser
altimetry, the variable density of sea ice, retracking of radar
returns from rough sea ice, and the need for an a priori snow-
depth and density distribution (Kern et al., 2015; Landy et al.,
2020).

The impact of snow-depth uncertainty on SIT retrievals
was recently included by the IPCC in a list of “Key Knowl-
edge Gaps and Uncertainties” (Meredith et al., 2019). More
specifically, Bunzel et al. (2018) found snow to have a strong
influence on the interannual variability of SIT and conse-
quent detection of thickness trends. Here we investigate the
impact of a new, pan-Arctic snow-depth and density data
set (SnowModel-LG; Liston et al., 2020a; Stroeve et al.,
2020) on trends and variability in regional SIT when used in
place of the traditional, climatological data set (Warren et al.,
1999). We show that traditional calculations of SIT omit sig-
nificant interannual variability due to their reliance on a snow
climatology, and we quantify this omission. We also show

that sea ice is likely thinning at a faster rate in some marginal
seas than previously thought, because the snow water equiv-
alent on the sea ice is declining too.

The role of snow in radar-altimetry-derived sea ice
thickness retrievals

Satellite radar altimetry involves the emission of radar
pulses from a satellite and the subsequent detection of their
backscatter. The time difference between emission and detec-
tion (time of flight) corresponds to the distance travelled and
thus the height of the transmitter above the scattering surface.
Radar altimeters of different frequencies have been carried
on board several earth observation satellites such as ERS-1/2,
Envisat, AltiKa, CryoSat-2 and Sentinel-3A/B (Quartly et al.,
2019). We now quantify the role of snow cover in conven-
tional sea ice thickness estimation, before revealing and ex-
plaining the effects of previously unincorporated trends and
variability.

The Ku-band radar waves emitted from CryoSat-2 are gen-
erally assumed in mainstream SIT products to scatter from
the snow/sea ice interface (Kurtz et al., 2014; Tilling et al.,
2018; Hendricks and Ricker, 2019; Landy et al., 2020). The
difference in radar ranging (derived from time of flight) be-
tween areas of open water and areas of sea ice is known as the
radar freeboard, fr. The height of the sea ice surface above
the waterline is referred to as the sea ice freeboard, fi. This
is extracted from the radar freeboard through (a) assuming
that the primary scattering horizon corresponds to the sea ice
surface and (b) accounting for the slower radar wave propa-
gation through the snow cover above the sea ice surface (Ar-
mitage and Ridout, 2015; Mallett et al., 2020). The sea ice
freeboard can then be converted to sea ice thickness by con-
sidering the floe’s hydrostatic equilibrium given the sea ice
density and weight of overlying snow. In the simplified case
of bare sea ice, we would calculate

SITbare = fr
ρw

ρw− ρi
, (1)

where ρw is the density of seawater and ρi the density of
sea ice. In order to adjust the above equation for the pres-
ence of overlying snow, the twin effects of the snow’s weight
and the snow’s delaying influence on radar pulse propaga-
tion must be taken into account. These three influences on
SIT (the radar freeboard measurement, the pulse propagation
delay and the freeboard depression from snow weight) can
therefore be expressed as three terms (see Supplement) in
the following way:

SIT= hr
ρw

ρw− ρi
+hs

ρw

ρw− ρi

[
c

cs
− 1

]
+hs

ρs

ρw− ρi
. (2)

In this paper we introduce a simple method for combin-
ing the second and third terms of the above equation into
a single term that is proportional to the snow water equiva-
lent (Sect. 3.1). This helps to easily separate the influences of
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Figure 1. The definitions of the marginal Arctic seas used in this
paper, from Stroeve et al. (2014). Two black, concentric circles in-
dicate the latitudinal limits of the CryoSat-2 (inner circle; 88◦ N)
and Envisat (outer circle; 82.5◦ N) missions.

snow data and radar freeboard measurements on the determi-
nation of sea ice thickness. Specifically, we compare the im-
pact of two snow products on regional trends and variability
in sea ice thickness. These products are the snow climatology
given by Warren et al. (1999) and the output of SnowModel-
LG (Liston et al., 2020a; Stroeve et al., 2020).

2 Data description

2.1 Regional mask

We define seven regions of the Arctic Basin using the mask
from Stroeve et al. (2014), which is gridded onto a 25 km
resolution EASE grid (Brodzik et al., 2012, Fig. 1). We define
the “marginal seas” of the Arctic Basin as the colour-coded
areas of Fig. 1 excluding the Central Arctic. All constituent
regions of the marginal seas grouping lie within the coverage
of Envisat barring a negligible portion of the Laptev Sea.

2.2 Radar freeboard data

To examine the impact of snow products on Envisat/CryoSat-
2 thickness retrievals, we used radar freeboard data from the
ESA Sea Ice Climate Change Initiative (Hendricks et al.,
2018a). These data are available from October in the winter
of 2002/03 until April in the winter of 2016/17. This prod-
uct was chosen for two main reasons: (a) it provides a con-
sistent record for both the Envisat and CS2 missions (Paul

et al., 2018) and (b) it is publicly available for download.
CS2 carries a delay-Doppler altimeter that significantly en-
hances along-track resolution by creating a synthetic aper-
ture. For this reason as well as its higher latitudinal limit, we
used CS2 radar freeboard measurements over Envisat during
the period when the missions overlapped (November 2010–
March 2012). To create a radar freeboard product that is con-
sistent between the Envisat and CS2 missions, Envisat re-
turns are retracked using a variable threshold retracking algo-
rithm. This variable threshold is calculated from the strength
of the surface backscatter and the width of the leading edge of
the return waveform such that the inter-mission bias is min-
imised (Paul et al., 2018). The results are comprehensively
analysed in the Product Validation & Intercomparison Re-
port (Kern et al., 2018). One key finding of this report is
that while Envisat radar freeboards are calculated so as to
match CS2 freeboards during the period of overlap over the
whole Arctic Basin, there are biases over ice types. In partic-
ular, Envisat ice freeboards (not radar freeboards) are biased
2–3 cm low (relative to CS2) in areas dominated by multi-
year ice (MYI) and 2–3 cm high in areas dominated by first-
year ice (FYI). We discuss the implications of these biases in
Sect. 5.3.

While the ESA CCI data are only available from the CCI
website until the winter of 2016/17, the CryoSat-2 radar free-
boards in these data are identical to the CS2 radar free-
board product of the Alfred Wegener Institute (Hendricks
and Ricker, 2019, this was manually confirmed). We were
therefore able to extend our radar freeboard time series
through the winter of 2017/18, which is when our snow data
from SnowModel-LG (see below) ends.

All radar freeboard data used in this study are supplied on
a 25 km EASE grid (Brodzik et al., 2012), the same as that
of SnowModel-LG.

2.3 The Warren climatology (W99)

The most commonly used radar-altimetry SIT products use
algorithms developed by the Centre for Polar Observation
and Modelling, the Alfred Wegener Institute and the NASA
Goddard Space Flight Center (Tilling et al., 2018; Hendricks
and Ricker, 2019; Kurtz et al., 2014). Another commonly
used but not publicly available product is from the NASA Jet
Propulsion Laboratory (Kwok and Cunningham, 2015). All
four groups utilise modified forms of the snow climatology
assembled by Warren et al. (1999) from the observations of
Soviet drifting stations between 1954 and 1991 (henceforth
referred to as W99).

While the consistent use of W99 for sea ice thickness cal-
culation is convenient for intercomparison of products (e.g.
Sallila et al., 2019; Landy et al., 2020), the data have a num-
ber of drawbacks. This work is centred around two key issues
with the use of W99 for SIT retrieval: inadequate representa-
tion of interannual variability and trends.
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The Warren climatology includes quadratic fits for every
month of snow water equivalent and snow depth. We pro-
jected these fits over the 361× 361 EASE grid (for combi-
nation with our radar freeboard data and comparison with
SnowModel-LG) to create snow water equivalent (SWE)
and depth distributions across the Arctic Basin as defined in
Sect. 2.1.

Drifting station coverage illustration

At this point it is instructive to briefly illustrate the cover-
age of the drifting stations from which W99 was compiled.
We analysed position and snow-depth data from the 28 drift-
ing stations that contributed to W99 (Fig. 2a). It is clear
that the vast majority of these operated in the Central Arctic
or in the East Siberian Sea, with very little sampling done
in most other marginal seas. But while these tracks illus-
trate the movements of the drifting stations, it is important
to note that the stations were not always collecting snow
data which would contribute to the W99 climatology. To
assess the spatial distribution of snow sampling, we cross-
referenced the position data with days on which the drifting
stations recorded the snow depth at their measuring stakes.
We then calculated the number of measurement days in each
region–month combination (Fig. 2b). We note that when two
drifting stations were operating at the same day, we count this
as two distinct days (as they were rarely so close together so
as to collect redundant data).

This reveals that no snow measurements were taken in the
Barents and Kara seas, and none were taken in the Laptev
Sea for 4 of the 7 winter months. While snow-line transect
data also contributed to W99 (and indeed were used in pref-
erence to stake data where possible), we find that snow-line
data were overwhelmingly collected on days where stake
data were also collected.

Figure 2 illustrates that the quadratic fits of W99 are not
obviously appropriate for use in several of the marginals seas.
However we note that a number of authors have still used the
climatology for sea ice thickness retrievals in these regions,
often in the course of sea ice volume calculations (e.g. Laxon
et al., 2003, 2013; Tilling et al., 2015, 2018; Kwok, 2018;
M. Li et al., 2020; Belter et al., 2020; Z. Li et al., 2020). We
therefore consider these regions in this paper, but with the
understanding that mW99 is potentially not representative of
the snow conditions.

2.4 The modified Warren climatology (mW99)

The W99 climatology is by definition invariant from year to
year and was implemented in this way by Laxon et al. (2003)
and Giles et al. (2008a) to estimate sea ice thickness using
ERS 1 and 2. When implemented like this, the amount of
snow on sea ice exhibits no interannual variability.

The implementation of W99 was then modified by Laxon
et al. (2013) based on the results of Operation IceBridge

flights which showed reduced snow depth over first-year ice
(Kurtz and Farrell, 2011). This implementation, known as
“mW99”, consists of halving snow depths over first-year ice
with snow density kept constant. Because the areal fraction
and spatial distribution of FYI changes from year to year, this
modification introduces a small degree of interannual vari-
ability into the contribution of snow data to sea ice thickness.
We investigate this in Sect. 4.1.1.

2.5 Ice type data

Sea ice type data are required to modify W99 and create
mW99. One popular product for this (e.g. Tilling et al., 2018;
Hendricks and Ricker, 2019) is an operational product from
the EUMETSAT Ocean and Sea Ice Satellite Application Fa-
cility (OSI SAF, http://www.osi-saf.org/, last access: 10 May
2021). However, this data series begins in March 2005. This
is after our study begins (in October 2002).

A similar product exists, published by the Copernicus
Climate Data Store (CDS, https://cds.climate.copernicus.eu/,
last access: 10 April 2021; Aaboe, 2020). This product’s un-
derlying algorithm is adopted from the OSI SAF processing
chain but has been modified to produce a consistent record
compatible with reanalysis. Furthermore, the CDS product
only assimilates information from passive satellite radiome-
ters, whereas the OSI SAF operational product assimilates
additional data from active scatterometers. Despite these dif-
ferences, a brief comparison of the products reveals a high
degree of similarity.

It would be possible to use the CDS product prior to the
beginning of the OSI SAF product in 2005, but this ap-
proach raises issues surrounding the continuity of the prod-
ucts across the 2005 transition. Since our investigation fo-
cusses on trends and variability, we prioritise a consistent
record and opt to use the CDS ice type product for the en-
tirety of our study.

Both ice type products occasionally include pixels of am-
biguously classified ice. We implemented a very simple in-
terpolation strategy to classify these points while creating our
mW99 data, although they are rarely present in winter within
the regions analysed in this paper. Where the ambiguous pix-
els are generally surrounded by a given ice type, they are
then classified as the surrounding type. In the case where the
ambiguous classification is on the boundary between the two
types, the snow depth was not divided by two.

2.6 SnowModel-LG

To investigate the impact of variability and trends in snow
cover on regional sea ice thickness we use the results of
SnowModel-LG (Liston et al., 2020a; Stroeve et al., 2020).
SnowModel-LG is a Lagrangian model for snow accumula-
tion over sea ice; the model is capable of assimilating meteo-
rological data from different atmospheric reanalyses (see be-
low) and combines them with sea ice motion vectors to gen-
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Figure 2. (a) Tracks of Soviet drifting stations 3–31. (b) Number of days in each region in each month that snow stake measurements were
taken.

erate pan-Arctic snow-depth and density distributions. The
sea ice motion vectors used were from the Polar Pathfinder
data set at weekly time resolution (Tschudi et al., 2020).
SnowModel-LG exhibits more significant interannual vari-
ability than mW99 in its output because it reflects year-to-
year variations in weather and sea ice dynamics.

SnowModel-LG includes a relatively advanced degree of
physics in its modelling of winter snow accumulation. The
model creates and merges layers based on precipitation and
snowpack metamorphism. The effects of sublimation, depth-
hoar formation and wind packing are included. However, the
effects of snow loss to leads by wind and extra snow accumu-
lation due to sea ice roughness are not included. Furthermore,
the heat flux to the snow is not sensitive to the thickness of
the underlying sea ice.

SnowModel-LG creates a snow distribution based on re-
analysis data, and the accuracy of these snow data is un-
likely to exceed the accuracy of the input. There is signifi-
cant spread in the representation of the actual distribution of
relevant meteorological parameters by atmospheric reanaly-
ses (Boisvert et al., 2018; Barrett et al., 2020). The results
of SnowModel-LG therefore depend on the reanalysis data
set used. However, the data product used has been tuned to
match Operation IceBridge (OIB)-derived snow depths dur-
ing spring time, and snow-depth differences between the re-
analysis products were found to be less than 5 cm (Stroeve
et al., 2020). We note that the vast majority of Operation
IceBridge flights were over the Beaufort Sea and the Green-
landic side of the Central Arctic, which is generally cov-
ered by multi-year ice. It is therefore conceivable that the
scaling factors would be different if FYI were better sam-
pled by OIB. The time-averaged regional differences be-
tween SnowModel-LG runs forced by ERA5 and MERRA2
reanalysis data are shown in Fig. S3. The SnowModel-LG
data used in this study are generated from the average of
SnowModel-LG runs forced by the two reanalysis prod-

ucts. The SnowModel-LG data are provided on the same
25 km EASE grid as the ESA-CCI radar freeboards described
above at daily time resolution. We averaged this daily prod-
uct to produce monthly gridded data for combination with
the monthly radar freeboard data.

2.7 NASA Eulerian Snow on Sea Ice Model
(NESOSIM)

To support and broaden the impact of our findings, we repeat
our analyses with NESOSIM data from 2002–2015 (Petty
et al., 2018b). NESOSIM data are released on a 100×100
km grid which was interpolated to the 25× 25 km EASE
grid of the SnowModel-LG and radar freeboard data. NE-
SOSIM runs in a Eulerian framework and like SnowModel-
LG can assimilate precipitation data from a variety of reanal-
yses data. In contrast with SnowModel-LG’s multi-layered
scheme, NESOSIM uses a two-layer snow scheme to rep-
resent depth-hoar and wind-packed layers. To define these
layers, it assimilates surface winds and temperature profiles
from reanalysis. Wind-blown snow loss is parameterised to
leads using daily sea ice concentration fields (Comiso, 2000,
updated 2017).

In this study we use data from a NESOSIM run initialised
on 15 August for each year. The initial depth was produced
by a “near-surface air-temperature-based scaling of the Au-
gust W99 snow-depth climatology” (Petty et al., 2018b).
This is a linear scaling based on the duration of the preced-
ing summer melt season. Snow density was initialised using
the August snow-line observations of Soviet NP drifting sta-
tions 25, 26, 30 and 31. Data from the most recent publicly
available drifting stations were chosen to maximise their rel-
evance in a changing climate.
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3 Methods

3.1 Contributions to thickness determination from
snow and radar freeboard data

We now identify that the height correction due to slower
radar pulse propagation in snow scales in almost direct pro-
portion to the total mass of penetrated snow (ms; Fig. S1). As
such, it can be easily combined with the change to the floe’s
hydrostatic equilibrium from snow loading (also linearly de-
pendent onms) to make one transformation to modify Eq. (2)
such that

SIT= fr
ρw

ρw− ρi
+ms

ρw

ρw− ρi
× 1.81× 10−3. (3)

Physically, the first term of Eq. (3) corresponds to the SIT
were the sea ice known to have no snow cover. The second
term is the additional sea ice thickness that is inferred from
knowledge of the overlying snow cover. SIT has been decom-
posed into linearly independent contributions from radar-
freeboard data and snow data. This allows the contributions
of the two data components to SIT to be assessed indepen-
dently. A derivation of the 1.81×10−3 coefficient is available
in the Supplement.

We highlight here that our expression in Eq. (3) of the con-
tribution of snow data to SIT determination solely in terms
of snow mass is technically convenient for using W99 to es-
timate sea ice thickness, as quadratic fits of density (unlike
depth and snow water equivalent) are not publicly available
for all months. This has led to the required density values of-
ten being set to a constant value or “backed out” by dividing
the published SWE distributions by the depth distributions.

Equation (3) and its factor of 1.81×10−3 allow the simple
expression of the theoretical change to the radar freeboard
under rapid snow accumulation or removal. Making fr the
subject of the equation and assuming SIT constant we find

∂fr

∂ms
=−1.81× 10−3 (m/kgm−2). (4)

We stress that the above equation assumes total radar pen-
etration of overlying snow, an assumption discussed in
Sect. 5.3. As well as allowing independent analysis of the
radar and snow data contributions to SIT at a point, the lin-
early independent nature of Eq. (3) in terms of fr and ms
allows for a simple calculation of the average SIT in a region
(SIT) as

SIT= RF+Snow, (5)

where RF and Snow represent the spatial averages of the first
and second terms of Eq. (3).

3.2 Assessing snow trends and variability at a point

In Sect. 4.1 we briefly compare the statistics for trends and
variability at drifting stations published in Warren et al.

(1999) with those introduced by mW99 and SnowModel-LG
at a given point. We carry out this analysis to establish that
the mW99 variability and trends at a given point (chosen as
pixels on a 25× 25 km EASE grid) are considerably smaller
than those observed at drifting stations.

The monthly interannual variability (IAV) values pub-
lished in Warren et al. (1999) are calculated as the standard
deviation of the snow depths at drifting stations when com-
pared to the climatology at the position of the stations. The
IAV values at a point-like drifting station in a region will
therefore naturally be higher than the IAV of the region’s spa-
tial mean. As such, to compare IAV values from point-like
drifting stations to mW99, we calculate the IAV at individual
ice-covered points on a 25× 25 km equal-area grid (Brodzik
et al., 2012). These are all positive values, which we then av-
erage for comparison with the drifting stations. By regionally
averaging the IAV values of many points rather than calcu-
lating the IAV of regional averages, we replicate the statistics
of the point-like drifting stations.

However, the main part of this paper does not focus on
trends and variability at a point (as measured by drifting sta-
tions) but instead investigates trends and variability in Snow
and SIT at the regional scale (Sect. 4.2 and 4.3). This vari-
ability is significantly lower than the typical variability at a
point, as many local anomalies from climatology within a re-
gion are averaged out in the calculation of single, area-mean
values which form a time series for each region.

3.3 Assessing regional interannual variability

Section 4.2 of this paper focuses on the interannual variabil-
ity in regional SIT, which (treating RF and Snow as random,
dependent variables) can be expressed thus:

σ 2
SIT
= σ 2

RF+ σ
2
Snow
+ 2Cov(RF,Snow), (6)

where the final term represents the covariance between spa-
tially averaged radar freeboard and snow contributions. This
covariance term can be expressed as 2r×σSnow×σRF, where
r is the dimensionless correlation coefficient between the
variables and ranges between −1 and 1. To further explain
this term, if years of high RF are correlated with high Snow,
then the covariance term will be high and interannual vari-
ability in SIT will be amplified. If mean snow depths are
anti-correlated with mean radar freeboard across the years,
interannual variability in SIT will be reduced.

SIT, RF and Snow were calculated where any valid grid
points existed on the 25×25 km EASE grid. Because of this,
no average values were computed in the Kara Sea in October
2009 or 2012. Furthermore, no October values were gener-
ally available in the Barents Sea after 2008 (with the excep-
tion of 2011 and 2014). The impact of this on our resulting
analysis is clearly visible in the top left panel of Fig. 10. We
do not exclude the Barents Sea in October from our analysis
because of the low number of valid points, but we do high-
light the undersampling issue here. We continue to consider
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it because we do not find statistically significant declining
trends with the data we have, so essentially we are report-
ing a null result. Our calculations of interannual variability
in this month are inherently adjusted for the small sample
size, but we nonetheless urge caution in interpretation of the
values. The number of grid points available for averaging in
each region in each month are shown in Fig. S2.

The three terms on the right-hand side of Eq. (6) corre-
spond to the three unique terms of the covariance matrix of
the two terms of Eq. (5). The main-diagonal elements of this
2× 2 matrix correspond to the variance of the snow contribu-
tion and the radar freeboard contribution to sea ice thickness,
terms one and two of Eq. (6). The off-diagonal elements are
identical and sum to form the third term of Eq. (6).

We calculated this matrix for each region in each month
to investigate the sources of regional interannual variability
in SIT for the time period under consideration (2002–2018).
The Central Arctic region is not sufficiently well observed
by the Envisat radar altimeter (see Fig. 1), so the covariance
matrix for the region was only calculated for the CS2 period
(2010–2018).

In some cases a natural degree of covariance is introduced
between the regional Snow and RF time series because they
both display a decreasing trend. This “false variance” would
not be present were the system in a steady state. As such,
we detrended the regional time series prior to calculation of
the covariance matrix. We found that doing this significantly
decreased the value of the covariance term in Eq. (6).

We consider the relative contributions of these three terms
to σ 2

SIT
in calculations involving mW99 and SnowModel-

LG (Sect. 4.2). In light of these results, we then re-assess
the statistical significance of regional trends in SIT using
SnowModel-LG.

Detection of temporal trends in SIT is critically dependent
on accurate characterisation of σ 2

SIT
. This is because con-

ventional tests for trend exploit the known probability of a
system with no trend generating the data at hand through
variability alone (Chandler and Scott, 2011, p. 61). In this
paper we argue that the σ 2

Snow
term of Eq. (6) has been

systematically underestimated through the use of a quasi-
climatological snow data set (mW99). As an alternative to
this we use the results of SnowModel-LG, a snow accumula-
tion model that incorporates interannual changes in precipi-
tation amount, freeze-up timing and sea ice distribution.

3.4 Assessing regional temporal trends

In Sect. 4.3 we examine temporal trends in regional SIT for
each month of the growth season (October–April) and de-
compose the results by sea ice type. It is stressed that these
regional trends are each the trend of a single time series of
spatially averaged thickness values rather than the average of
many trends in sea ice thickness at various pixels in a region.
Regional trends were deemed statistically significant if they
passed a two-tailed hypothesis test with a p value less than

0.05, with a null hypothesis of no trend. Trends were calcu-
lated for regional SIT over the Envisat–CS2 period (2002–
2018) for all regions apart from the Central Arctic for which
only CS2 data were available. We assess the relationship of
these trends in SIT to trends in RF and Snow (Fig. S19).

In Sect. 4.1.2 we show that basin-wide average snow depth
and SWE is decreasing in SnowModel-LG in most months
but only in October for mW99. We point out here that (under
the paradigm of total radar wave penetration of snow on sea
ice) under-accounting for potential reductions in SWE may
partially mask a decline in sea ice thickness, as reductions in
radar freeboards are partially compensated for by reductions
in snow depths. From Eq. (5),

∂(SIT)
∂t
=
∂(RF)
∂t
+
∂(Snow)
∂t

. (7)

4 Results

4.1 Comparison of point trends and point variability

4.1.1 Low interannual variability in mW99 compared
to drifting stations and SnowModel-LG

How does the variability in mW99 and SnowModel-LG at a
given point compare to the values recorded at Soviet drifting
stations published by Warren et al. (1999)? These values for
interannual variability are not currently used in sea ice thick-
ness retrievals (although they do contribute to uncertainty es-
timates in the ESA-CCI sea ice thickness product). Nonethe-
less, they offer a benchmark against which to evaluate the
variability induced by mW99 at a given location.

Using the method described in Sect. 3.2 we find that the
snow variability at a point from mW99 (Fig. 3, blue bars) is
on average about 50 % of the values recorded at the drifting
stations (Fig. 3, green bars). By comparison, SnowModel-LG
snow-depth variability at a given point is significantly higher,
ranging from∼ 75 % of the drifting station values in October
to ∼ 115 % by the end of winter.

We present this analysis of the point-like snow variability
to illustrate that mW99 does not introduce enough variabil-
ity at a given point to match that observed at drifting stations
from year to year. Furthermore, the variability that does exist
is confined to a distinct band of the Arctic Ocean (Fig. 4).
This band represents areas where the sea ice type is not typ-
ically either FYI or MYI. Instead it is either switching be-
tween the two, or it is an area where FYI has replaced MYI
during the period of analysis. In areas where sea ice type is
temporally unchanging, snow variability is not present. This
has implications at the regional scale as marginal seas with a
consistent sea ice type experience unrealistically low σSnow
in the mW99 scheme.
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Figure 3. Interannual variability (2002–2018) in snow depth from mW99 and SnowModel-LG compared to the values given in Table 1 of
Warren et al. (1999).

Figure 4. mW99 snow-depth variability at each EASE grid point over the 2002–2018 period. This is calculated by generating a time series
of snow depth at each point and then calculating the standard deviation of that time series. High variability is displayed in a band where sea
ice type typically fluctuates from year to year. IAV is zero in areas that do not exhibit sea ice type variability, introducing unphysically low
variability in SIT.

4.1.2 Lack of temporal trends in mW99 compared to
SnowModel-LG and in situ data

Weak trends exist at some points in the mW99 Arctic snow
distribution due to the shifting distribution and abundance of
first-year ice in the Arctic. In this section we briefly address
their size, sign and veracity, leaving regional analysis until
Sect. 4.2.

Values for SWE and depth trends measured by individ-
ual drifting stations are given in W99, but the values are not
statistically significant for any of the winter months and as
such are not displayed here. We instead compare the point
trends at all colour-coded regions of Fig. 1 from mW99 and
SnowModel-LG (Fig. 5).

We find that when we average the point trends at a basin-
wide scale, the only statistically significant trend (at the 5 %
level) for mW99 snow depth is a positive one for the month of
October (+0.11 cm/yr; Fig. 5). This increasing trend in snow

depth is in part due to the diminishing area of October FYI
relative to that of MYI (Fig. S4) and in part due to the retreat
of the October sea ice into the Central Arctic where W99 ex-
hibits higher snow depths and SWE. The increasing October
areal dominance of MYI is in part driven by delayed Arctic
freeze-up (Markus et al., 2009; Stroeve et al., 2014). The area
of sea ice over which the W99 climatology is halved in Octo-
ber is therefore shrinking, and basin-wide mean snow depths
in mW99 are increasing. Trends in sea ice type fraction for
each winter month are displayed in Fig. S4, and monthly time
series for mW99 SWE are displayed in Fig. S5.

Unlike mW99, SnowModel-LG exhibits statistically sig-
nificant, negative point trends for the later 5 of the 7 win-
ter months (when averaged at a basin-wide scale). We iden-
tify two processes as responsible for this decreasing trend:
the MYI area is shrinking, so a smaller MYI sea ice area
is present during the high snowfall months of September
and October (Boisvert et al., 2018); and also freeze-up com-

The Cryosphere, 15, 2429–2450, 2021 https://doi.org/10.5194/tc-15-2429-2021



R. D. C. Mallett et al.: Snow’s impact on SIT variability and trends 2437

Figure 5. Basin-wide spatial average of point-like trends in (a) snow depth and (b) SWE, from mW99 and SnowModel-LG. Calculated
for the Envisat–CS2 period (2002–2018). Significance values (in %) are given at the base of each bar. Only October trends for mW99 are
significant at the 5 % level, whereas significant negative trends exist in SnowModel-LG for December–April.

mences later, so a lower FYI area is available in these
months, and more precipitation falls directly into the ocean.
Webster et al. (2014) observed a −0.29 cm/yr trend in West-
ern Arctic spring snow depths using both airborne and in
situ sources. These airborne contributions to this statistic in-
cluded data over both sea ice types, and the in situ con-
tributions included data from individual Soviet drifting sta-
tions from the Western Arctic. The statistic compares well
with the behaviour of SnowModel-LG (−0.27 cm/yr March;
−0.31 cm/yr April) but is considerably beyond that of the
non-statistically significant trends of W99 and mW99.

What might the effects of this decline be on SIT at re-
gional scales and larger? In terms of Eq. (7), models and
observations indicate that ∂(Snow)/∂t is negative on long
timescales (Webster et al., 2014; Warren et al., 1999; Stroeve
et al., 2020). However, the use of mW99 effectively sets
∂(Snow)/∂t to zero and to a positive value in October. This
has the effect of biasing ∂(SIT)/∂t high (and towards zero).
Section 4.3 examines the effect of using SWE data with a
more realistic decline on regional SIT trends; this is medi-
ated by the effects of higher interannual variability, which is
examined in Sect. 4.2.

4.2 Realistic SWE interannual variability enhances
regional SIT interannual variability

Having illustrated the deficiency of point trends and point
variability in mW99, we now move on to the impact of snow
data on SIT at the regional scale.

We calculate the interannual variability of detrended time
series of the snow contribution to the thickness determina-
tion (Snow) from mW99 and SnowModel-LG. We display
some of these results in Fig. 6. We did this for every win-
ter month (October–April) and for each region defined in

Fig. 1. SnowModel-LG data produce more variable time se-
ries of Snow (i.e. higher values of σ 2

Snow
; cf. Eq. 6). This is

the case for all months, in all regions. For snow in the Kara
Sea, mW99 introduces almost 4 times less interannual vari-
ability into SIT via Snow than SnowModel-LG in the April
time series. This analysis is further broken down by sea ice
type in Figs. S7 and S8.

Having shown that SnowModel-LG’s contribution to SIT
is more variable than mW99, how does this increased vari-
ability propagate into sea ice thickness variability itself
(σ 2

SIT
)? To answer this question, we must examine the way

in which the snow contribution to SIT combines with data
from satellite radar freeboard measurements. Having calcu-
lated the σ 2

Snow
term of Eq. (6) (displayed in Fig. 6), we now

turn to the 2Cov(RF,Snow) term. To assess this we calcu-
late the magnitude and statistical significance of correlations
between the detrended RF and Snow contributions to SIT in
individual years, regions and months.

To do this we calculated a monthly time series of RF and
Snow for each region over the time period 2002–2018 (with
the Central Arctic being 2010–2018). Because we consid-
ered eight regions and 7 months, this led to 56 pairs of time
series for RF and Snow. We then detrended each of them. We
then calculated the correlation between each of the pairs of
detrended time series. We note here that the correlation be-
tween the time series is dependent on their relative position to
a linear regression. These correlation statistics are thus inde-
pendent of the absolute magnitude of the values, their units or
any linear scaling of the axes. We therefore choose to present
the correlations in Fig. 7 without axes and scaled to the rect-
angular panels, so as to best show the relative positions of the
points without extraneous numerical information.
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Figure 6. Detrended time series of spatially averaged snow contributions to sea ice thickness (Snow) by region from W99 (blue) and
SnowModel-LG (red). Standard deviation values are displayed for SnowModel-LG (lower left, red) and mW99 (lower right, blue). All
regions are plotted in Supplement Fig. S6.

We find statistically significant correlations between Snow
and RF to generally range between 0.6–0.85 (Fig. 7). All sta-
tistically significant correlations were positive ones, and this
was also the case when individual sea ice types were consid-
ered for each region. When all sea ice types were considered,
the Laptev and East Siberian seas exhibited statistically sig-
nificant correlations in 5 and 6 of the 7 growth-season months
respectively. The Barents Sea and the Beaufort Sea both ex-
hibited 1 month of correlation, and the Central Arctic region
exhibited no months of correlation – the reasons for this are
discussed in Sect. 5.4). When analysed as a single, large re-
gion, the marginal seas area exhibits correlations in 4 of the
7 months analysed, with the strength of these correlations in-
creasing over the season.

We continued this analysis by breaking down the regions
by sea ice type. The area of the Central Arctic sea ice covered
with first-year ice exhibits strong correlations (all above 0.8)
in the later 5 months of the winter (Fig. S9).

When considering correlations over multi-year ice (MYI),
the marginal seas grouping exhibits correlations in the first 4
growth-season months (Fig. S10). The MYI fraction Central
Arctic, Chukchi and Barents seas exhibited no correlations.
We note that this analysis is relatively sensitive to the de-
trending process. When performed without detrending, sta-
tistically significant correlations are noticeably more com-
mon. This is because Snow and RF are both in decline in

some areas, which introduces an inherent correlation from
the trend.

Having identified and quantified regions and months of
significant covariance between Snow and RF (Fig. 7), we
are in a position to fully answer the question of how the in-
creased variability of SnowModel-LG over mW99 (shown in
Fig. 6) ultimately impacts σ 2

SIT
. We plot the three contribut-

ing components to σ 2
SIT

for each region in each winter month
(Fig. 8). We note that in the case of negative covariability be-
tween Snow and RF, it is possible for σ 2

Snow
+σ 2

RF
to be larger

than σ 2
SIT

. This is not problematic because σ 2
Snow
+ σ 2

RF
does

not represent a real quantity when the variables are not inde-
pendent.

In the marginal seas σ 2
Snow

overtakes σ 2
RF

to become the
main constituent of σ 2

SIT
by the end of the growth season

(Fig. 8). This is particularly driven by the behaviour of the
Beaufort and East Siberian seas, where this relationship is
clearly visible. In the Central Arctic σ 2

RF
narrowly remains

the dominant component of σ 2
SIT

throughout the cold season,
although σ 2

Snow
plays an increasing role as the season pro-

gresses.
Covariance between RF and Snow makes relatively con-

stant contributions to σ 2
SIT

of the marginal seas grouping in
comparison to the other two components, but analysis of
this grouping conceals more significant variation at the scale
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Figure 7. Covariability of contributions to sea ice thickness from radar freeboard and SnowModel-LG-derived snow components over all
sea ice types. Plots are coloured with magenta when a statistically significant correlation is present between the contributions (p > 0.95).
Analogous plots are displayed for the FYI and MYI components of the regions in Figs. S9 and S10.

of the individual group members. The covariability term of
Eq. (6) makes a larger contribution than radar freeboard
variability itself at times, for example in the Kara and East
Siberian seas at the end of winter and for the Chukchi Sea
in February and March. For the Central Arctic, the covari-
ability term generally makes less of a contribution to total
SIT variability than radar freeboard or snow variability indi-
vidually and is negative in the first 2 months of winter. We
note that the covariability is almost always positive in the
marginal seas with the exception of December in the Kara
and Chukchi seas.

Finally, we directly compare the variability of SIT itself,
when calculated using SnowModel-LG and mW99. We con-
duct this exercise in both absolute terms (Fig. 9a) and as a
fraction of the regional mean thickness (Fig. 9b).

Calculation of regional SIT with SnowModel-LG reveals
higher variability in all marginal seas of the Arctic Basin in
all months. When the marginal seas are analysed as a con-
tiguous entity, the standard deviation is 0.09 m with mW99

and 0.16 m with SnowModel-LG. This represents an increase
in SIT variability of 77 %. For the Central Arctic this figure is
considerably smaller, at 25 %. When the individual marginal
seas are considered, the largest increase was the Kara Sea
(138 %) and the smallest was the Beaufort Sea (35 %).

One key aspect of interannual variability is how it com-
pares to typical values. When IAV is expressed as a percent-
age of the regional mean thickness, the Barents Sea exhibits
the largest increase when calculated with SnowModel-LG:
the standard deviation (as a percentage of mean thickness)
increases from 15 % to 25 %. When variability is viewed in
this way, the increase in the Central Arctic is small (7.9 %
to 9.4 %). Variability as a fraction of mean thickness is also
highest in the Barents Sea when calculated with SnowModel-
LG – whereas with mW99 this designation would go to the
Beaufort Sea. When analysed as one area, variability (as a
fraction of mean thickness) in the marginal seas transitions
from being 7.5 % of the mean thickness to 13.8 % when cal-
culated with SnowModel-LG.
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Figure 8. Constituent parts of σ 2
SIT

of different regions. Bars represent the variance (σ 2) of RF and Snow and the covariance between the

two. Panel (a) illustrates the absolute variance contributions, and panel (b) illustrates the relative contributions. The variance of Snow in
mW99 is indicated in panel (a) by a superimposed black bar. Snow contributes significantly more variability in the late winter than radar
freeboard in most of the marginal seas.

We also note that MYI exhibits more thickness variability
than FYI (both absolutely and relative to the sea ice type’s
mean thickness) in all the marginal seas (Fig. S11). For the
marginal seas as a single group, MYI is roughly twice as
variable in absolute terms. This is not the case in the Cen-
tral Arctic, where the thickness variability of the individual

sea ice types is highly similar (with FYI IAV slightly larger
when calculated relative to regional mean thickness).
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Figure 9. Standard deviation in sea ice thickness over the period 2002–2018 except for the Central Arctic: 2010–2018 (a) calculated in
absolute terms and (b) calculated as a percentage of the regional mean thickness over the period. Mean growth-season values shown with
dashed lines. The individual detrended regional time series from which this figure is synthesised are available in Fig. S12.

4.3 New and faster thickness declines in the marginal
seas

As well as exhibiting higher interannual variability than
mW99, SnowModel-LG Snow values decline over time in
most regions due to decreasing SWE values year over year.
Here we examine the aggregate contribution of a more vari-
able but declining Snow time series in determining the mag-
nitude and significance of trends in SIT.

We first assess regions where SIT was already in statisti-
cally significant decline when calculated with mW99. This
is the case for all months in the Laptev and Kara seas and 4
of 7 months in the Chukchi and Barents sea. The rate of de-
cline in these regions grew significantly when calculated with
SnowModel-LG data (Fig. 10; green panels). Relative to the
decline rate calculated with mW99, this represents average
increases of 62 % in the Laptev sea, 81 % in the Kara Sea
and 102 % in the Barents Sea. The largest increase in an al-
ready statistically significant decline was in the Chukchi Sea

in April, where the decline rate increased by a factor of 2.1.
When analysed as an aggregated area and with mW99, the to-
tal marginal seas area exhibits a statistically significant neg-
ative trend in November, December, January and April. The
East Siberian Sea is the only region to have a month of de-
cline when calculated with mW99 but not with SnowModel-
LG.

We now turn our attention to new trends that stem from the
use of SnowModel-LG over mW99 (Fig. 10; red panels). Our
analysis reveals a new, statistically significant SIT decline in
the Chukchi Sea in October (taking the number of months
with a decline in SIT to 5). Perhaps more significantly, the
aggregated marginal seas region exhibits 2 new months of
statistically significant declining SIT in October and Febru-
ary, taking the total number of declining months to 6. No
months in any marginal sea exhibited a statistically signifi-
cant increasing trend in SIT (with either snow data set).

The Central Arctic region exhibits a statistically signifi-
cant thickening October trend with both snow data sets (10
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and 9 cm/yr with SnowModel-LG and mW99). The region
exhibits an additional month of increase in November when
calculated with SnowModel-LG (7 cm/yr).

We also analyse these regional declines as a percentage of
the regional mean sea ice thickness in the observational pe-
riod (2002–2018; Fig. 11). We observe the average growth-
season thinning to increase from 21 % per decade to 42 %
per decade in the Barents Sea, 39 % to 56 % per decade in
the Kara Sea, and 24 % to 40 % per decade in the Laptev Sea
when using SnowModel-LG instead of mW99. Five of the 7
growth-season months in the Chukchi Sea exhibit a decline
with SnowModel-LG of (on average) 44 % per decade. This
is much more than that of the 4 significant months observ-
able with mW99 (25 % per decade). We find the marginal
seas (when considered as a contiguous, aggregated group)
to be losing 30 % of its mean thickness per decade in the
6 statistically significant months when SIT is calculated us-
ing SnowModel-LG (as opposed to mW99).

We further analyse these declining trends by sea ice type.
This reveals the aggregate trends in the marginal seas to be
broadly driven by thickness decline in FYI rather than MYI.
We note that the FYI sea ice cover in the Kara and Laptev
seas is in statistically significant decline with either snow
product in all months. The FYI cover in the Barents Sea is
also in decline for 6 of the 7 winter months when calcu-
lated with SnowModel-LG. We find that (when analysed with
SnowModel-LG) if any month in a specific marginal sea is in
“all types” decline, its first-year ice is also statistically signif-
icantly declining.

4.4 Changes to the sea ice thickness distribution and
seasonal growth

We now consider differences in the spatial sea ice thick-
ness distribution introduced by a snow product with IAV. Be-
cause mW99 has low spatial variability in its SWE fields (the
quadratic fits are relatively flat), it produces a more sharply
peaked and narrow SIT distribution with lower probabilities
of thinner or thicker sea ice in the months January–April. The
SIT distribution also exhibits some degree of bimodality due
to the halving scheme. This bimodality is to a large degree
represented in the SnowModel-LG histograms – an encour-
aging result (Fig. S13).

The regional, seasonal growth rate is also similar when
comparing calculations with SnowModel-LG and mW99
(Fig. S14). These rates were calculated over the period 2002–
2018 with the exception of the Central Arctic, which was re-
stricted to the period 2010–2018. Among the most salient dif-
ferences are the much smoother seasonal evolution of snow
cover in the Barents Sea from SnowModel-LG and the de-
cline in SWE from March to April in the Kara, Laptev and
Beaufort seas with mW99 (compared to a continued increase
with SnowModel-LG). In the East Siberian and Laptev seas
there is clearly a slightly lower seasonal growth rate when

calculated with mW99, and this is also true to a lesser extent
in the Chukchi Sea.

5 Discussion

5.1 Sensitivity of findings to choice of snow product

5.1.1 Choice of climatology – combining AMSR2 with
mW99

The most recent sea ice thickness product from the Alfred
Wegener Institute (Hendricks and Ricker, 2019) makes use
of a new snow climatology, generated by the merging of W99
with snow-depth data derived from the AMSR2 passive mi-
crowave record. This is then applied with a halving scheme
based on sea ice type in a similar way to mW99 (but with the
AMSR2 component not halved). This likely improves the ab-
solute accuracy of snow depths (and thus sea ice thickness)
but does not resolve the issues discussed in this paper involv-
ing trends and variability. The modified AMSR2/W99 cli-
matology functions in a very similar way to mW99 – a weak
IAV is introduced in areas of interannually fluctuating sea
ice type. Any trends will be the result of trends in the relative
dominance of sea ice type. This was discussed in Sect. 4.1.2
and illustrated in Fig. S4: sea ice type trends are only signif-
icant in October and January, where they are weak.

5.1.2 Choice of reanalysis forcing for SnowModel-LG

Barrett et al. (2020) reviewed precipitation data from vari-
ous reanalysis products over the Arctic Ocean using records
from the Soviet drifting stations and found the magnitude of
interannual variability to be similar. They further broke these
data down to the regional scale using the same regional def-
initions in this paper and found that this similarity persisted.
Boisvert et al. (2018) conducted a similar analysis with drift-
ing ice mass balance buoys and found the interannual vari-
ability of the data sets to also be similar (although the au-
thors found larger discrepancies in magnitude). These differ-
ences in magnitude however cannot be physical (as there is
only one Arctic), and Cabaj et al. (2020) were able to bring
precipitation estimates into better alignment using Cloud-
Sat data with a scaling approach. However this scaling ap-
proach preserved the interannual variability of the data sets,
which Barrett et al. (2020) and Boisvert et al. (2018) found
to be in comparatively good agreement. To investigate how
this variability propagates into Snow variability, we calculate
Snow time series from SnowModel-LG runs forced by both
MERRA-2 and ERA-5 data and find their variability to be
very similar (Fig. S15).

With regard to trends, we find that the two different reanal-
ysis forcings generally introduce minimal differences in the
SIT trends (Fig. S16). We do however find that small differ-
ences in SWE cause the Snow contribution of the MERRA-2
SnowModel-LG run to exhibit statistically significant decline
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Figure 10. Regional SIT time series calculated using mW99 and SnowModel-LG. Note the different y-axis scale for the Central Arctic and
East Siberian Sea. Panels featuring a statistically significant trend in sea ice thickness when calculated with both mW99 and SnowModel-LG
are framed with green. Red frames indicate where the trend is only significant when calculated with SnowModel-LG. Blue frames indicate
where a statistically significant increase is detected with mW99 but not with SnowModel-LG. Where trends are statistically significant, trend
lines are superimposed.

in regions and months where the ERA-5 run does not (with
only a small change to the p value). Analysis of the abso-
lute Snow time series reveals them to be otherwise similar
(Fig. S17).

We take these clear similarities as evidence that our find-
ings are in principle robust to the choice of atmospheric re-
analysis.

5.1.3 Choice of model – comparison with NESOSIM

Some uncertainty is introduced into the spatial distribution
of snow in a given year by SnowModel-LG snow parame-
terisations and simplifications, such as the lack of snow loss
to leads. We therefore repeat our analyses with 2002–2015
data from the NASA Eulerian Snow On Sea Ice Model (NE-
SOSIM; Petty et al., 2018b).

We find that doing this increases the relative importance
of snow variability to sea ice thickness variability (Fig. S18).

We also observe that the NESOSIM calculations are consid-
erably more similar to those done with SnowModel-LG than
with mW99. NESOSIM replicates the increasingly dominant
σ 2

Snow
contribution to σ 2

SIT
over the winter in the marginal

seas and also replicates the higher contribution of σ 2
RF

in
the Central Arctic compared to both the individual and ag-
gregated marginal seas. Striking resemblances are seen for
the Kara Sea and the East Siberian Sea. Furthermore, the
negative covariances for November in the Barents Sea and
December in the Chukchi are replicated (albeit with signifi-
cantly greater magnitude in the Barents Sea). NESOSIM also
replicates the negative covariances in October and November
in the Central Arctic but also introduces negative covariance
in December (unlike SnowModel-LG).

Because the NESOSIM data are only publicly available
from 2002–2015, any underlying trends in the SIT time se-
ries are more challenging to detect because of the shorter ob-
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Figure 11. Sea ice thickness trends in the four marginal seas that
exhibited robust trends in several winter months in the period 2002–
2018. Average winter trend (calculated only from statistically sig-
nificant months) from each snow product shown with dashed lines.
Data points are only shown where a statistically significant trend is
present for that month and for the relevant snow data.

servational period (by comparison to regions where all rele-
vant data are available from 2002–2018). On the other hand,
the calculated interannual variability is not reduced by the
shorter time series, further obscuring any potential underly-
ing trends. But despite these differences, both snow data sets
produce statistically significant decline in all months in the
Laptev Sea. NESOSIM reproduces 6 of the 7 months of de-
cline in the Kara Sea shown by SnowModel-LG and 3 of the
5 in the marginal seas.

Further inspection of the individual data points across all
regions and months reveals good agreement in regional SIT
when calculated with either SnowModel-LG or NESOSIM –
we take this as evidence that our findings concerning trends
and variability over the longer 2002–2018 period are robust
to the choice of reanalysis-accumulation model.

5.2 Study limitations

Statistical treatment

We have assumed in calculating single figures for variances
that the interannual variability of the systems at hand is time
stationary. It is unclear whether this is the case, as the time
series are limited in length and time resolution and thus offer
limited scope to test for stationarity. Furthermore we only
tested for linear trends, when trends may in fact be non-
linear. However, a visual inspection of Fig. (10) implies that
this approximation is adequate on a qualitative level. Our
trend tests also were two tailed, with the null hypothesis that
there was no trend. We could have formulated an alternate
test where our null hypothesis was that the trend was posi-
tive. This would have given a higher number of statistically
significant instances of negative trends, but we deemed this
inappropriate as one of the regions (the Central Arctic) does
exhibit significant positive trends with the two-tailed test.

5.3 Inter-mission bias between Envisat and CryoSat-2

An extensive validation exercise for the merged products in-
dicated that although Envisat radar freeboards match well
with CS2 freeboards in the Arctic overall, some biases do
exist over specific ice types (ESA, 2018). In particular, anal-
ysis of the inter-mission overlap period indicates that Envisat
freeboards were biased low (relative to CS2) in areas domi-
nated by MYI and high in areas dominated by FYI.

We first make the point that this will have a relatively min-
imal effect on our findings regarding interannual variability,
as Snow is unaffected by this and σ 2

RF
is likely relatively in-

dependent of the absolute magnitude of RF.
With regard to trends, if Envisat radar freeboards (and thus

RF) are in fact biased high over FYI between 2002–2010
(relative to CS2), then the total trend in many regions domi-
nated by FYI could potentially be smaller than calculated in
this paper.

We do however add that our findings regarding the impact
of declining Snow are unaffected by any inter-mission bias
in RF. Because the trend in SIT is determined by both Snow
and RF, the trend in SIT will always be more negative when
calculated with downward trending data for Snow.

The effects of incomplete radar penetration of the
snowpack

This investigation has been carried out within the paradigm
of total Ku-band radar wave penetration of the snow cover
(as suggested by Beaven et al., 1995); however, some in
situ investigations have cast doubt on this. The issue was
highlighted in an Antarctic context by Giles et al. (2008b)
for ERS radar freeboards, and it was shown subsequently
that significant morphological features in the snowpack (e.g.
depth hoar, wet snow or crusts) enhanced radar scattering

The Cryosphere, 15, 2429–2450, 2021 https://doi.org/10.5194/tc-15-2429-2021



R. D. C. Mallett et al.: Snow’s impact on SIT variability and trends 2445

from within the snowpack (Willatt et al., 2010). For the Arc-
tic, Willatt et al. (2011) found that airborne Ku-band radar
backscatter in the Bay of Bothnia was returned from nearer
the snow–ice than snow–air interface in only 25 % of cases
when the temperature was close to freezing, with the fig-
ure increasing to 80 % at lower temperatures. Nandan et al.
(2017) observed that the presence of brine in the base of the
snowpack can raise the scattering horizon by several cen-
timetres. However, these investigations were often (but not
exclusively) carried out at the end of the winter season or
in the Sub-Arctic, when warmer temperatures may have in-
creased the snow’s brine volume fraction and diurnal forcing
can drive rapid snow metamorphism. Both of these factors
will be less prevalent in the colder months of winter. This
analysis is therefore carried out using the imperfect histori-
cal assumption present in publicly available sea ice products
(that of total penetration).

What would the effects of incomplete penetration of the
snowpack be on our findings? As the height of the primary
radar scattering horizon rises through the snow, the altimeter
operation transitions from that of a radar altimeter to that of
a lidar altimeter. Knowledge of overlying snow contributes
positively to the inference of SIT in the case of a radar al-
timeter (i.e. the coefficient of the ms term of Eq. 3 is pos-
itive). However, the influence of overlying snow on lidar-
based SIT estimates is negative (i.e. the presence of more
snow for a given measured radar freeboard implies less un-
derlying sea ice). As the scattering horizon rises through the
snowpack, the SIT contribution of snow therefore decreases,
reaches zero (in the top half of the snowpack, with the exact
location depending on snow density) and proceeds to nega-
tive values. The result of potential incomplete penetration for
our study is that the magnitude of the reported trend and vari-
ance underestimations is diminished. Were our investigation
based on a similarly long time series of lidar freeboards com-
bined with a snow climatology, one of our conclusions would
be that diminishing snow cover is leading to overestimation
of rates of decline in the marginal seas.

We finally note the potentially confounding influence of
negative freeboard in regions such as the Atlantic sector of
the Central Arctic region and the Barents Sea. In the case
of high snowfall and low sea ice thickness, the sea ice sur-
face can be depressed to the waterline or below. Beyond this
point Eq. (5) no longer functions. The prevalence of negative
freeboards has been studied by Rösel et al. (2018) and Merk-
ouriadi et al. (2020) but has yet to be incorporated into any
radar-altimetry-based sea ice thickness retrievals. This situa-
tion can be driven by storm tracks entering the Arctic from
the Atlantic (but also the Bering Strait). These intrusions of
warm air can also drive snow grain metamorphism, which
may well affect radar penetration through the snowpack.

5.4 The impact of enhanced variability from
SnowModel-LG

When used instead of mW99, SnowModel-LG data increase
the interannual variability of SIT in the marginal seas by
more than 50 %. The main way that this occurs is though
increasing σ 2

Snow
values (Fig. 6). The second and less signifi-

cant way that σ 2
SIT

is increased is through some positive cor-

relations between Snow and RF values for individual months
in some regions (Fig. 7). Because the two time series are pos-
itively correlated in some cases, σ 2

SIT
is increased; for the

marginal seas region this covariance term makes up around
15 %–20 % of σ 2

SIT
(Fig. 8).

While values for interannual variability are given in W99,
it was previously impossible to apply those values to either a
given year or to fulfil Eq. (6). SnowModel-LG offers similar
variability to the SWE statistics given in W99 (Fig. 3) and
can generate a yearly time series of values. Furthermore it
can be combined with radar freeboard data to generate all
terms of Eq. (6) for a direct calculation of σ 2

SIT
.

Comparing our IAV values to the literature is challeng-
ing due to differences in the area over which other authors
have calculated IAV values. Haas (2004) investigated the in-
terannual variability of an area within the Transpolar Drift
in the Central Arctic and northern Barents Sea and found a
0.73 m standard deviation. This is considerably higher than
the values determined in this study, although these data were
collected by electromagnetic sounding in late summer over
a 10-year period that does not overlap with this analysis.
Laxon et al. (2003) defined a “region of coverage”, which
essentially consisted of the marginal seas considered in this
analysis with the addition of some areas of the Canadian
Archipelago and the Greenland Sea. The authors found a
variability of 0.24 m using W99 in this region of coverage
over an 8-year timescale. Unlike Haas (2004), this value is
lower than our findings using either mW99 or SnowModel-
LG. Similar to Haas (2004), the time period is considerably
shorter and the geographical area is not identical. Finally,
Rothrock et al. (2008) found interannual variability in SIT
to be 0.46 m over a 25-year period (1975–2000), using sub-
marine records from a variety of Arctic regions. It is likely
that the values in these studies differ due to the unequal spa-
tial extent over which the IAV was calculated; averaging over
a larger area reduces the IAV due to the averaging out of local
anomalies.

5.5 The impact of new and steeper trends in mean sea
ice thickness

The replacement of multi-year ice with first-year ice has been
documented to be reducing Arctic-mean SWE on sea ice in
spring (Webster et al., 2014). However, progressively later
freeze-ups in the Arctic are also likely driving a reduction
in mean SWE in the early cold season. This is because sea
ice covers a relatively smaller area in the high-precipitation
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months of September and October. When the sea ice area
then expands with the progression of the growth season, the
newer sea ice has not been exposed to this snowfall. This
mechanism is not accounted for in mW99, and as such snow
depths do not decrease at a statistically significant level in
any month.

In this study we have assessed how these negative trends
in Snow propagate through into trends in SIT. In every area
where a statistically significant decline in radar freeboards is
observed, a statistically significant decline in SnowModel-
LG SWE is also observed (Fig. S19). In addition to this,
SnowModel-LG also exhibits Snow decline in other months
in the Beaufort and Barents Sea. As such, reductions in Snow
usually act in concert with observed reductions in RF, am-
plifying decline in SIT. This relationship is illustrated by
the fact that several months in several regions do not ex-
hibit a statistically significant decline in either RF or Snow
(Fig. S19), but despite this they do exhibit a decline in SIT
(Fig. 10). We note here that this co-decline in Snow and RF is
separate to the covariability presented in Sect. 4.2 and Fig. 7,
as that was calculated from detrended data.

Because SnowModel-LG data feature a steeper decline
in Snow than mW99, a steeper decline is observed in the
SIT of several regions. However, the SnowModel-LG Snow
contribution to SIT also exhibits significantly more vari-
ability, which acts to reduce statistical significance of SIT
trends. Despite this compensating effect, the statistical sig-
nificance of trends in SIT were generally greater than those
calculated using mW99. Furthermore, statistically significant
trends emerged in new months and new regions.

Kwok and Rothrock (2009) analysed 42 years of subma-
rine records and the 5-year ICESat record. However, it is
challenging to draw comparison with our results, as trends
were gleaned from submarine track crossings and by com-
paring the thickness difference between the period of sub-
marine observation and that of ICESat observations. The dif-
ficulty in comparison is further compounded by differences
in regional designation and the area of the submarine data
release (which is generally confined to the Central Arctic re-
gion where the radar-altimetry time series is at best limited to
the CryoSat-2 era). This is also the case for the updated anal-
ysis of Kwok (2018), who seasonally adjusted mean thick-
ness values to match crossover points in submarine tracks in
time and space.

Our findings of enhanced interannual variability and
steeper decline have implications for Arctic stakeholders and
the deployment of human infrastructure. The marginal seas
are heavily used for the shipping of goods along the Northern
Sea Route in summer (Eguíluz et al., 2016) and provide the
setting for potential extraction of natural resources (Petrick
et al., 2017). Furthermore, the season during which vessels
may traverse the Northern Sea Route is lengthening. Higher
variability in sea ice thickness may pose a challenge to the
planning of this seasonal travel, particularly with regard to
the need for ice-strengthened escorts for conventional vessels

(Melia et al., 2017; Cariou et al., 2019). The enhancement
of declining trends where they exist is perhaps of benefit to
these industries.

5.6 The interannual relationship between radar
freeboard and snow depth

We finally consider the physical mechanisms behind posi-
tive or non-significant correlations between Snow and RF
displayed in Fig. (7). Assuming total radar penetration of
the snow cover, as snow accumulates on sea ice it should
lower the local radar freeboard by a distance on the order
of half its accumulated height (Eq. 4). This lowering is a
result of physical depression of the sea ice surface and an
increase in the radar ranging due to slower radar wave propa-
gation in snow (in approximately a 60 : 40 ratio). Over short
timescales (days to weeks), this would result in a negative
correlation between local snow depth and local radar free-
board. This corresponds to a negative covariability term in
Eq. (5) and is represented by purple bars in Fig. (8). Nega-
tive values are generally not seen, with the exception of Oc-
tober and November in the Central Arctic, November in the
Barents Sea, and December in the Chukchi and Kara seas.
Furthermore, snow is a highly insulating material, and its ac-
cumulation limits sea ice thermodynamic growth. This would
also bring about a negative correlation between snow depth
and radar freeboard, lagged over a period of weeks.

The lack of negative correlations between RF and Snow
from year to year is likely indicative of the timescale of
our analysis. If present, the negative correlation implied by
Eq. (4) and the mechanisms above must only be present on
shorter timescales (e.g. days). So what drives the positive
correlations between RF and Snow where they exist? One
driver over FYI is likely sea ice age. Sea ice formed at the
beginning of the season has a longer time to (a) grow thicker
and (b) accumulate snow. Both variables are therefore likely
controlled by regional freeze-up timing, explaining the cor-
relation. The combined evolution of Snow and RF anomalies
as a function of regional freeze-up timings is likely to be the
subject of future study. The relationship between MYI radar
freeboards and accumulated SWE may also form an avenue
for further study.

6 Summary

In this paper we used a novel approximation for the slow-
ing of radar waves in snow to decompose the conventional
method for estimating sea ice thickness into two contribu-
tions: one originating from radar freeboard data (from satel-
lite altimeters) and the other from snow data of varying
provenance.

This allowed a regional assessment of the conventional im-
pact of snow on variability and trends in sea ice thickness. We
then used a new snow data set (from SnowModel-LG) with a
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more realistic magnitude of interannual variability and trends
to calculate the regional sea ice thickness time series.

We found that interannual variability in average sea ice
thickness (σ 2

SIT
) of the marginal seas was increased by more

than 50 % by accounting for variability in the snow cover.
On a seasonal timescale we find that variability in the snow
cover makes an increasing contribution to the total variability
of inferred sea ice thickness, increasing from around 20 % in
October to more than 70 % in April.

We also observed that the trends in SnowModel-LG data
propagated through to the SIT time series, amplifying the de-
cline in regions where it was already significant and introduc-
ing significant decline where it did not previously exist. This
occurred in spite of the compensating effect of enhanced in-
terannual variability.

Code and data availability. The code used for all analysis and
visualisation was written in Python 3.6 and is available at
https://github.com/robbiemallett/SnowModel-LG_SIT_Impacts
(robbiemallett, 2020). The radar freeboard data from Envisat
and CryoSat-2 are available from the ESA CCI initiative at
https://climate.esa.int/en/odp/#/dashboard (Hendricks et al.,
2018a, b). The NESOSIM snow data are available from the NASA
Cryospheric Sciences Laboratory website at https://earth.gsfc.
nasa.gov/cryo/data/nasa-eulerian-snow-sea-ice-model-nesosim
(NASA Cryospheric Sciences Laboratory, 2021). SnowModel-
LG data are currently pending review at the US Na-
tional Snow and Ice Data Center and will be available at
https://doi.org/10.5067/27A0P5M6LZBI (Liston et al., 2020b).
Code and data last accessed on 20 February 2020.
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