Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3465-2020
https://doi.org/10.5194/tc-14-3465-2020
Research article
 | 
19 Oct 2020
Research article |  | 19 Oct 2020

Toward a method for downscaling sea ice pressure for navigation purposes

Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante

Related authors

CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024,https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
A sea ice deformation and rotation rates dataset (2017–2023) from the Environment and Climate Change Canada Automated Sea Ice Tracking System (ECCC-ASITS)
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, and Lekima Yakuden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-227,https://doi.org/10.5194/essd-2024-227, 2024
Preprint under review for ESSD
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Smoothed particle hydrodynamics implementation of the standard viscous–plastic sea-ice model and validation in simple idealized experiments
Oreste Marquis, Bruno Tremblay, Jean-François Lemieux, and Mohammed Islam
The Cryosphere, 18, 1013–1032, https://doi.org/10.5194/tc-18-1013-2024,https://doi.org/10.5194/tc-18-1013-2024, 2024
Short summary
A probabilistic seabed–ice keel interaction model
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022,https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024,https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024,https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024,https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary

Cited articles

Bouchat, A. and Tremblay, B.: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice, J. Geophys. Res.-Oceans, 122, 5802–5825, https://doi.org/10.1002/2017JC013020, 2017. a
Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., and Thorndike, A. S.: Modeling the pack ice as an elastic-plastic material, AIDJEX Bulletin, 24, 1–105, 1974. a
Daley, C., Alawneh, S., Peters, D., and Colbourne, B.: GPU-Event-Mechanics Evaluation of Ice Impact Load Statistics, in: OTC Arctic Technology Conference, https://doi.org/10.4043/24645-MS, Houston, Texas, USA, 10–12 February 2014. a, b
Dukowicz, J. K.: Comments on the “stability of the viscous-plastic sea ice rheology”, J. Phys. Oceanogr., 27, 480–481, 1997. a, b, c, d, e, f
Dupont, F., Higginson, S., Bourdallé-Badie, R., Lu, Y., Roy, F., Smith, G. C., Lemieux, J.-F., Garric, G., and Davidson, F.: A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans, Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, 2015. a
Download
Short summary
Sea ice pressure poses great risk for navigation; it can lead to ship besetting and damages. Sea ice forecasting systems can predict the evolution of pressure. However, these systems have low spatial resolution (a few km) compared to the dimensions of ships. We study the downscaling of pressure from the km-scale to scales relevant for navigation. We find that the pressure applied on a ship beset in heavy ice conditions can be markedly larger than the pressure predicted by the forecasting system.