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Abstract. Sea ice pressure poses great risk for navigation; it
can lead to ship besetting and damages. Contemporary large-
scale sea ice forecasting systems can predict the evolution of
sea ice pressure. There is, however, a mismatch between the
spatial resolution of these systems (a few kilometres) and the
typical dimensions of ships (a few tens of metres) navigat-
ing in ice-covered regions. In this paper, the downscaling of
sea ice pressure from the kilometre-scale to scales relevant
for ships is investigated by conducting high-resolution ide-
alized numerical experiments with a viscous-plastic sea ice
model. Results show that sub-grid-scale pressure values can
be significantly larger than the large-scale pressure (up to∼ 4
times larger in our numerical experiments). High pressure at
the sub-grid scale is associated with the presence of defects
(e.g. a lead). Numerical experiments show significant stress
concentration on both sides of a ship beset in sea ice, espe-
cially at the back. The magnitude of the stress concentration
increases with the length of the lead (or channel) behind the
ship and decreases as sea ice consolidates by either thermo-
dynamical growth or mechanical closing. These results also
highlight the difficulty of forecasting, for navigation applica-
tions, the small-scale distribution of pressure, and especially
the largest values as the important parameters (i.e. the length
of the lead behind the ship and the thickness of the refrozen
ice) are not well constrained.

1 Introduction

With the growing shipping activities in the Arctic and sur-
rounding seas, there is a need for user-relevant sea ice fore-
casts and products at multiple timescales and spatial scales.
An important forecast field for navigation is the internal sea
ice pressure (simply referred to as pressure for the rest of this
paper). In compact ice conditions, high-pressure events can
complicate navigation activities and even pose great risk for
ship besetting.

By solving equations for the momentum balance and for
the ice thickness distribution, sea ice models are able to pre-
dict the evolution of the pressure field. However, even for
high-resolution operational forecasting systems with spatial
resolutions of a few kilometres (e.g. Dupont et al., 2015;
Hebert et al., 2015), there is a clear mismatch in the spa-
tial scales considered. Indeed, the forecast pressure from the
model, which represents the average pressure for a grid cell
of a few kilometres wide, is not necessarily relevant for a
much smaller ship; there are larger pressure values than the
average pressure provided by the sea ice forecasting system
(Kubat et al., 2010, 2012; Leisti et al., 2011). Figure 1 shows
an example of a pressure forecast from a large-scale forecast-
ing system. The Canadian Arctic Prediction System (CAPS)
is a fully coupled atmosphere–sea ice–ocean system devel-
oped and maintained by the Canadian Centre for Meteoro-
logical and Environmental Prediction. Its domain covers the
Arctic Ocean, the North Atlantic and the North Pacific. The
spatial resolution of the atmospheric model is ∼ 3 km, while
the spatial resolution in this region for the sea ice and ocean
models is∼ 4.5 km. Looking at a specific region that is north
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Figure 1. A 24 h forecast of the sea ice pressure (kNm−1) and of the
surface winds (ms−1) from the Canadian Arctic Prediction System
(CAPS). The forecast was initiated at 00:00 UTC on 29 April 2020.
Almost all of the domain is shown in (a), while (b) is a subset of the
domain located in the region of Svalbard (the sub-region is defined
by the blue rectangle in a). Note that the colour scale is not the same
for the two panels.

of Svalbard (Fig. 1b), it can be observed that the surface
winds push the ice toward the coast and create large pres-
sure.

Some researchers have done case studies of compressive
or besetting events using large-scale sea ice forecasting sys-

tems (e.g. Kubat et al., 2012, 2013; Leisti et al., 2011). These
besetting events are all associated with heavy ice conditions.
The investigations of Kubat et al. show the importance of the
coast on pressure conditions; the sea ice pressure often in-
creases toward the coast.

Mussells et al. (2017) used ship logs and satellite imagery
to relate besetting events and density of sea ice ridges. They
indeed found that the ship was often beset in areas and times
of the year with high ridge densities. Probabilistic models
for ship performance in sea ice and likelihood of besetting
events have also been developed (e.g. Montewka et al., 2015;
Turnbull et al., 2019). Turnbull et al. (2019) argue that the
primary cause of the besetting events they studied were the
relatively large ice floes encountered by the vessel.

There is also a vast literature on the performance of ships
navigating in ice-infested waters and on the estimation of ice
resistance, that is the longitudinal forces applied on the ship
by the ice (e.g. Lindqvist, 1989; Su et al., 2010; Jeong et al.,
2017). These calculations are important for ship design and
for operational considerations. Lindqvist (1989) introduced
a simple empirical formulation to calculate ice resistance
based on a ship’s characteristics and ice physical parameters.
When sea ice pressure is not considered, the resistance en-
countered by a ship only depends on processes such as crush-
ing, breaking and displacement of ice floes by the ship’s hull.
Based on laboratory experiments in ice tanks, Kulaots et al.
(2013) extended this empirical approach by also considering
the effect of compression on the performance of ships navi-
gating in ice-infested waters. There are also some numerical
studies of ice loads on ships transiting in ice-infested waters
where sea ice is represented using discrete elements (i.e. the
floes; Metrikin and Løset, 2013; Daley et al., 2014) or as a
continuum (e.g. Kubat et al., 2010).

In contrast with studies mentioned in the last paragraph,
we focus on ship besetting rather than on a ship progressing
in an ice-covered region. We also study the downscaling of
sea ice pressure from the kilometre scale to scales relevant
for navigation activities (tens of metres). Note that this was
briefly investigated by Kubat et al. (2010) for a ship transiting
through a loose sea ice cover. Kubat et al. (2010) showed that
the pressure on the hull of the ship can be 2 orders of mag-
nitude larger than the large-scale pressure. For our numerical
experiments, we use a continuum-based viscous-plastic sea
ice model. In a first set of simulations, we study how the
small-scale pressure depends on the stresses applied at the
boundaries, on the ice conditions and on the rheology param-
eters. The second part of the results is dedicated to shipping
applications; we investigate the small-scale pressure field in
the vicinity of an idealized ship beset in heavy ice condi-
tions and under compressive stresses. Idealized sea ice mod-
elling studies with a continuum-based approach have been
conducted by specifying strain rates at the boundaries (e.g.
Kubat et al., 2010; Ringeisen et al., 2019) or by specifying
wind patterns (e.g. Hutchings et al., 2005; Heorton et al.,
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2018). However, to our knowledge, it is the first time that
internal stresses are specified at the boundaries.

This paper is structured as follows. In Sect. 2, the sea ice
momentum equation and the viscous-plastic rheology are de-
scribed. The sea ice model used for the numerical experi-
ments is presented in Sect. 3. The approach for prescribing
sea ice stresses at the boundaries is presented in Sect. 4. The
validation of our experimental setup is done in Sect. 5. The
main results are given in Sect. 6. Finally, concluding remarks
are provided in Sect. 7.

2 Sea ice momentum equation and rheology

The large-scale sea ice forecasting system solves the sea ice
momentum given by

ρh
Du

Dt
=−ρhf ẑ×u+ τ a− τw+∇ · σ − ρhg∇Hd, (1)

where ρ is the density of the ice; h is the ice volume per unit
area (sometimes referred to as the mean thickness); D

Dt
is

the total derivative; f is the Coriolis parameter; u= ux̂+
vŷ is the horizontal sea ice velocity vector; x̂, ŷ and ẑ are
unit vectors aligned with the x, y and z axis of our Cartesian
coordinates; τ a is the wind stress, τw is the water stress; σ
is the internal ice stress tensor with components σij acting in
the j th direction on a plane perpendicular to the ith direction;
g is the gravitational acceleration; and Hd is the sea surface
height. This two-dimensional formulation, which is obtained
by integrating along the vertical, is justified when the ratio
between the horizontal and vertical scales of the problem is
large (i.e. a ratio of at least 10 : 1; Coon et al., 1974).

The sea ice pressure is by definition the average of the
normal stresses, that is

p =−(σ11+ σ22)/2, (2)

with a negative sign because, by convention, stresses in com-
pression are negative. The pressure is the first stress invariant
(i.e. it does not vary with the choice of the coordinate sys-
tem). The second stress invariant (q), that is the maximum
shear stress at a point, is defined by

q =

√
σ 2

12+

[
(σ11− σ22)

2

]2

. (3)

As the stresses are vertically integrated, the stresses and
stress invariants are 2D fields with units of newtons per me-
tre. Because the sea ice stresses are written as a function of
the sea ice velocity (see details below), one also obtains the
pressure p and the maximum shear stress q when solving the
momentum equation for u. Hence, by solving the momen-
tum equation for the large-scale sea ice model, the pressure
at every grid point is obtained (we refer to this pressure field
as the large-scale pressure).

Here, we consider a small area of sea ice (the size of a grid
cell) to be under compressive stresses. The idea is to apply
the large-scale pressure at the boundaries of this small area
and to simulate the sub-grid-scale sea ice pressure (referred
to as the small-scale pressure). We assume here that the ice
is neither moving nor deforming (e.g. it is being held against
a coast). To further simplify the problem, the wind stress, the
water stress, the advection of momentum and the sea surface
tilt term are neglected. We wish to find, inside this small do-
main, the steady-state solution of ρh∂u/∂t =∇ ·σ , which is
equivalent to finding the solution of ∇ · σ = 0. The stresses
are modelled according to the viscous-plastic rheology with
an elliptical yield curve (Hibler, 1979). With this rheology,
the relation between the stresses and the strain rates can be
written as

σij = 2ηε̇ij + [ζ − η]ε̇kkδij −Pδij/2, i,j = 1,2, (4)

where δij is the Kronecker delta; ε̇ij are the strain rates
defined by ε̇11 =

∂u
∂x

, ε̇22 =
∂v
∂y

and ε̇12 =
1
2 (
∂u
∂y
+

∂v
∂x
), ε̇kk =

ε̇11+ ε̇22; ζ is the bulk viscosity; η is the shear viscosity; and
P is a term which is a function of the ice strength.

The bulk and shear viscosities are, respectively,

ζ =
Pp

24
, (5)

η = ζe−2, (6)

where Pp is the ice strength;

4=
[
(ε̇2

11+ ε̇
2
22)(1+ e

−2)+ 4e−2ε̇2
12+ 2ε̇11ε̇22(1− e−2)

] 1
2 ;

and e is the aspect ratio of the ellipse, i.e. the ratio of the
long and short axes of the elliptical yield curve.

Following Hibler (1979), the ice strength Pp is parameter-
ized as

Pp = P
∗hexp[−C(1−A)], (7)

where P ∗ is the ice strength parameter; A is the sea ice con-
centration; and C is the ice concentration parameter, an em-
pirical constant set to 20 (Hibler, 1979) such that the ice
strength decreases quickly with the ice concentration. Un-
less otherwise stated, the rheology parameters P ∗ and e are,
respectively, set to 27.5 kNm−2 and 2.

When 4 tends toward zero, Eqs. (5) and (6) become sin-
gular. To avoid this problem, ζ is capped following the ap-
proach of Hibler (1979). It is expressed as

ζ =
Pp

21∗
, (8)

where 1∗ =max(1,1min) with 1min = 2× 10−9 s−1.
We use a replacement method similar to the one presented

in Kreyscher et al. (2000). The P term in Eq. (4) is given by

P = 2ζ4. (9)

The replacement method is commonly used in sea ice
models to prevent unrealistic deformations of the sea ice
cover when there is no external forcing.
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3 Experimental setup

The McGill sea ice model is used for the numerical exper-
iments. We use revision 333 with some modifications, de-
scribed below, for specifying stresses at the boundaries.

Considering a domain of a few kilometres by a few kilo-
metres wide (representing a grid cell of a large-scale sea ice
forecasting system), the idea is to use the model at very high
resolution for studying the distribution of pressure inside that
domain. To do so, the model was modified so that internal
stresses can be specified at the boundaries (instead of the
usual Dirichlet condition, i.e. u= 0, at land–ocean bound-
aries and the Neumann condition at open boundaries with
gradients of velocity equal to 0). These stresses at the bound-
aries represent the integrated effect of the wind and water
stresses (like one would get from a large-scale model). The
next section gives more details about the implementation of
the stress boundary conditions.

For the experiments, the domain is a square of dimensions
5.12km× 5.12km. It is subdivided into small squared grid
cells of dimensions1x×1x, with1x taking one of the fol-
lowing values depending on the experiment: 10, 20, 40, 80,
160, 320, 640 or 1280 m. The size of the domain was cho-
sen because it is close to the average size of CAPS sea ice
grid cells and because 5120 m divided by the1x listed above
gives an integer number of small grid cells. For simplicity, we
refer to this domain as our 5 km× 5 km domain.

The momentum equation ρh∂u/∂t =∇ · σ is solved at
time levels 1t , 21t , 31t , . . ., where 1t is the time step.
We introduce the index n= 1,2,3, . . ., which refers to these
time levels. Using a backward Euler approach for the time
discretization, the momentum equation is written as

ρh
(un−un−1)

1t
=∇ · σ n. (10)

The spatial discretization of Eq. (10) on the McGill model
Arakawa C-grid leads to a system of non-linear equations
that is solved using a Jacobian-free Newton–Krylov (JFNK)
solver (the most recent version is described in Lemieux et al.,
2014). The ice starts from rest. The time step is 30 min.
At each time level, the non-linear convergence criterion is
reached when the Euclidean norm of the residual has been
reduced by a factor of 10. The maximum number of non-
linear iterations is set to 500. The steady-state solution is as-
sumed when the maximum velocity difference between two
time levels is lower than 10−9 ms−1. As the ice is assumed
to be held against the coast, the simulated velocities are very
small (i.e. most of the ice cover is in the viscous regime).
Our numerical simulations therefore provide 2D static fields
of the internal stresses inside this small domain. Thermody-
namic processes and advection of h and A are neglected for
all the numerical experiments described in this paper.

For some of the numerical experiments, a digitized ship
is placed inside the domain. The digitized ship is simply de-
fined as a rigid body by using land cells. The boundary condi-

Figure 2. One grid cell on the western boundary of the domain with
indices l = 1 and m. This figure shows the location of the velocity
components on the C-grid of the McGill model. The variables h
and A are positioned at the tracer point t . Some variables (e.g. σ12)
are also calculated at the node (n) point. The stresses (σW and τW)
applied at the western boundary are shown with purple arrows.

tions on the contour of the ship are therefore no outflow and
no slip (i.e. u= 0), which is the usual Dirichlet approach for
land cells. This allows us to investigate the distribution of
small-scale pressure around this idealized ship.

4 Boundary conditions for the small domain

The boundary conditions are imposed the same way on the
four sides of the small domain. Hence, to shorten the paper,
only the treatment on the west side of the domain is explained
here. The McGill model uses an Arakawa C-grid; the center
of the cell is the point for tracers (e.g. h and A), while the
velocity components are positioned on the left side (for u)
and lower side (for v). To avoid confusion with the indices i
and j for the stresses σij and the strain rates ε̇ij , the indices
l andm are, respectively, used to identify the grid cells along
the x and y axes. The cell at the southwesternmost location of
the domain has indices l = 1 and m= 1. Figure 2 shows one
of the grid cells in the first column of the domain (on the west
side). The left side of the grid cell is on the west boundary of
the domain. The sides of the domain are referred to as west
(W), east (E), south (S) and north (N).

On the west side of the domain, a normal stress (σW)
and a shear stress (τW) are applied. The momentum balance
for the u component is comprised of the terms ∂σ11/∂x and
∂σ12/∂y. Inside the domain, these terms are approximated by
second-order centered differences. At the boundaries, how-
ever, a one-sided first-order approximation is employed for
∂σ11/∂x. Hence, ∂σ11/∂x at the u location u(l,m)= u(lm)
with l = 1 is approximated as

∂σ11

∂x
∼
σ11(1m)− σ

W
(m)

1x/2
, (11)

where σ11(1m) = [ζ(1m)+ η(1m)][u(2m)− u(1m)]1x
−1
+

[ζ(1m)−η(1m)][v(1m+1)−v(1m)]1y
−1
−P(1m)/2 is evaluated

at the t point.
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On the other hand, the term ∂σ12/∂y only depends on the
boundary conditions, that is

∂σ12

∂y
∼
τW
(m+1)− τ

W
(m)

1y
. (12)

For the v component v(1m) (which is at a distance of
1x/2 from the boundary), there is no special treatment for
∂σ22/∂y. However, the second-order treatment of the term
∂σ12/∂x follows

∂σ12

∂x
∼
σ12(2m)− τ

W
(m)

1x
, (13)

where σ12(2m) = η(2m)[u(2m)−u(2m−1)]1y
−1
+η(2m)[v(2m)−

v(1m)]1x
−1 is evaluated at the n point.

Even though u(1m) is located at the boundary, it is solved
along with v(1m) and all the other velocity components in the
domain by the non-linear solver.

In our simulations, σW
(m) = σ

W, and τW
(m) = τ

W; i.e. they
do not vary with m along the boundary (same idea for the
other sides of the domain). Furthermore, for numerical sta-
bility (see Appendix A), the normal stress on the east side
(σE) has to be equal to σW. Similarly, σ S

= σN and τW
=

τE
= τS

= τN.

5 Model validation

The McGill model has, over the years, been extensively
tested (e.g. Lemieux et al., 2014; Bouchat and Tremblay,
2017; Williams and Tremblay, 2018). A few simple exper-
iments were conducted in order to validate the implementa-
tion of the new stress boundary conditions.

In all the experiments, normal and shear stresses are ap-
plied at the four boundaries of the 5 km× 5 km domain. For
a given set of sea ice conditions, the steady-state solution of
Eq. (10) is obtained. This provides us with the velocity field
defined on the Arakawa C-grid. As the stresses and invari-
ants are functions of the sea ice conditions and velocity (see
Eqs. 2–9), static 2D fields of the internal stresses and invari-
ants are easily obtained.

Compared to realistic pan-Arctic simulations, the sim-
plicity of the problem allows one to obtain analytical solu-
tions for specific cases. In a first validating experiment, the
thickness (h) and concentration (A) fields are, respectively,
set to 2 m and 1 everywhere on the domain. By specifying
σW
= σE

= σ S
= σN

=−10 kNm−1 (i.e. p= 10 kNm−1)
and τW

= τE
= τS

= τN = 0 kNm−1 at the boundaries, the
shear stress should be 0 everywhere inside the domain while
the pressure field should be constant and equal to 10 kNm−1.
This is indeed what is obtained from the numerical experi-
ment (not shown). With p= 10 kNm−1, a 2 m ice cover is
able to resist this compressive stress; that is the ice should
be in the viscous regime. Using the definition of the stresses
from Eq. (4), we obtain p = P/2− ζ ε̇I, where ε̇I = ε̇11+ ε̇22

Figure 3. Pressure field for 1x= 10 m (a) and 1x= 20 m (b). The
thickness field is 2 m everywhere except a 1 km long, 40 m wide hor-
izontal lead in the middle of the domain. The normal stresses at the
boundaries are −10 kNm−1. Panel (c) shows PDFs of the pressure
in the 5 km× 5 km domain for 1x= 10 m (cyan) and 1x= 20 m
(dashed magenta). Bins of 0.25 kNm−1 were used to build the
PDFs.

is the divergence. It is easy to demonstrate that the analytical
solution for the divergence is ε̇I =−p1min/Pp =−3.63×
10−10 s−1. This is exactly what is obtained with the model
(not shown).

We also verify that we obtain the same results when a
lead is present within the physical domain for different spa-
tial resolution (1x). For example, Fig. 3 shows the pres-
sure field for a 1 km long, 40 m wide lead resolved with a
1x of 10 m (Fig. 3a) and for the same lead resolved with
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1x= 20 m (Fig. 3b). The thickness of the level ice (hl)
around the lead is 2 m. The maximum pressure at 10 m reso-
lution is 35.79 kNm−1, while the maximum pressure at 20 m
is 33.15 kNm−1. From these simulated 2D pressure fields,
probability density functions (PDFs) are calculated using
bins of 0.25 kNm−1. They are shown in Fig. 3c, which fur-
ther demonstrates that the simulated fields are very similar at
10 and 20 m resolutions.

The effect of the same lead but oriented differently in the
domain was also tested. The PDF of the pressure field is
exactly the same whether the lead is oriented horizontally
(west–east) or vertically (south–north; not shown). The spa-
tial distribution of pressure is qualitatively the same when
orienting the lead diagonally. The PDF of pressure for this
diagonal lead is similar to the PDF of the vertical and hor-
izontal ones, although we find that the maximum pressure
is usually a bit smaller (not shown). This is likely a conse-
quence of the spatial discretization of a finite width lead on a
Cartesian grid.

In a last set of experiments for the validation, we also
checked that the presence of relatively nearby boundaries
does not affect our conclusions. In the first experiment, with
1x= 20 m, a horizontal 1 km long and 20 m wide lead was
positioned in the center of the 5.12km× 5.12km domain. In
a second experiment, again with 1x= 20 m, the same lead
was positioned in a domain twice this size; that is the bound-
aries are much farther from the lead in the second experi-
ment. For both experiments, hl is again equal to 2 m. The
pressure fields around the lead are very similar (not shown) in
the two experiments, with maximum pressures in the domain
equal, respectively, to 36.22 and 36.36 kNm−1 (a difference
of ∼ 0.4 %). To avoid these boundary effects, we tend to po-
sition the important features in the center of the domain for
the numerical experiments. For a numerical experiment to be
valid, we require the simulated pressure in the first grid cells
around the domain to be within 10 % of the pressure value
specified at the boundaries.

6 Results

To limit the number of parameters that can be varied in
the numerical experiments, the thickness of the level ice hl
is always set to 2 m. Furthermore, for all the experiments
except the ones for the last figure, the normal stresses at
the boundaries are always equal to −10 kNm−1, while the
shear stresses are set to 0. In other words, σW

= σE
= σ S

=

σN
=−10 kNm−1 and τW

= τE
= τS

= τN
= 0kNm−1.

6.1 Idealized sea ice experiments

In a first set of experiments, we conduct idealized experi-
ments to investigate the impact of sea ice features (leads,
ridges, etc.) on the small-scale pressure field and especially
on the maximum pressure. These experiments will give us

Figure 4. Pressure (kNm−1) field for a thickness field of 2 m every-
where except a 1 km long, 10 m wide horizontal lead in the middle
of the domain (a; referred to as “single lead”). Pressure (kNm−1)
field for a thickness field of 2 m everywhere except a 1 km long,
10 m wide horizontal lead in the middle of the domain, a diagonal
refrozen lead (h= 0.5 m), a smaller lead in the northwestern part of
the domain and a 1 km ridge (h= 5 m in center, 2.5 m on each side)
in the southeastern part of the domain (b, referred to as “many fea-
tures”). For both experiments 1x= 10 m, and the normal stresses
at the boundaries are −10 kNm−1. c PDFs of the pressure for the
“single lead” experiment (cyan) and the “many features” experi-
ment (dashed magenta).

insights and guide us for the second series of experiments
with the idealized ship (see Sect. 6.2). Figure 4a shows the
pressure field for a uniform sea ice cover with hl = 2 m ex-
cept the presence of a 1 km long and 10 m wide lead. Large
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Figure 5. Maximum value of the shear stress invariant (a; kNm−1)
and of the pressure (b; kNm−1) in the domain as a function of lead
length for different values of the parameter P ∗ (P ∗= 20 kNm−2:
blue; P ∗= 27.5 kNm−2: orange; P ∗= 35 kNm−2: magenta). The
thickness field is 2 m everywhere except the 10 m wide horizontal
lead in the middle of the domain. The normal stresses at the bound-
aries are −10 kNm−1.

pressure is observed at the tips of the lead. In a second exper-
iment, the same sea ice thickness conditions are used except
that a smaller lead, a refrozen lead (with h= 0.5 m) and a
thick sea ice ridge (with h= 5 m) are also positioned in the
5 km× 5 km domain. The pressure field for this latter exper-
iment is shown in Fig. 4b. Figure 4c compares the PDFs of
pressure for these two experiments. Looking at the PDFs and
comparing Fig. 4a and b, one can notice that the other fea-
tures are not associated with such high pressure values and
that the maximum pressure is associated with the long 1 km
lead. To further support this conclusion, note that the max-
imum pressure in the 5 km× 5 km domain is 42.57 kNm−1

in the first experiment, while it is 42.59 kNm−1 in the sec-
ond one. In other words, the other features do not change our
analysis; what really matters is the longest lead as it is in the
vicinity of the longest lead that the largest stress concentra-
tion is found.

Figure 6. Pressure field with P ∗= 27.5 kNm−2 minus the pressure
field with P ∗= 20.0 kNm−2 (kNm−1). For both experiments, the
thickness field is 2 m everywhere except a 1 km long, 10 m wide
horizontal lead in the middle of the domain. The normal stresses at
the boundaries are −10 kNm−1.

Our results above suggest that only the longest lead needs
to be considered for estimating the largest small-scale pres-
sure. For a given hl and stresses applied at the boundaries,
there is more and more stress concentration when increasing
the length of a lead. This is shown in Fig. 5 for three values
of the parameter P ∗. For short leads, the ice around the lead
is able to sustain the stresses (the ice is rigid, that is in the
viscous regime). This is why the three curves are very simi-
lar in Fig. 5a and b for short leads. However, for longer leads,
there is more and more stress concentration. Some points of
the ice close to the tips of the lead fail (i.e. the state of stress
reaches the yield curve).

As the whole yield curve scales with the value of P ∗, a
larger P ∗ leads to larger maximum pressure and shear values.
When increasing P ∗, the maximum shear stress approaches
asymptotically the shear strength (dashed lines in Fig. 5a;
e−1hlP

∗/2). This asymptotic behaviour is less obvious for
the pressure (Fig. 5b) as it is still far from the compres-
sive strength (hlP

∗). A similar behaviour is observed when
varying the ellipse aspect ratio (which modifies the shear
strength). A smaller value of e leads to larger pressure values
and larger shear stresses values (with a similar asymptotic
behaviour) for long leads (not shown).

While the average pressure in the domain is the same
(10 kNm−1) for all the values of P ∗, the maximum pres-
sure is enhanced as P ∗ increases (as shown in Fig. 5b).
Comparing the pressure fields with P ∗= 27.5 kNm−2 and
P ∗= 20 kNm−2 (see Fig. 6) for the same lead shows that the
pressure fields around the lead are different over hundreds
of metres. Moreover, the largest difference in the pressure
fields are found at the tips of the lead; the pressure is much
larger with P ∗= 27.5 kNm−2 than with P ∗= 20 kNm−2 in
the vicinity of the tips.

We also investigate the evolution of the small-scale pres-
sure field as a function of resolution. The h and A fields are
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Figure 7. Schematic of the coarse-graining procedure. The thick-
ness field is defined at 10 m resolution (blue cells on the left). The
thickness field at 20 m resolution is obtained by averaging the h val-
ues of the four 10 m cells contained in the 20 m one (purple cell).
This procedure is repeated for the other lower resolutions. The same
method is applied for the concentration A. The indices l,m are for
the 10 m grid, while the indices l∗,m∗ are for the 20 m grid.

defined at 10 m resolution. These fields h and A are, respec-
tively, set to 2 m and 1.0 everywhere except for a 1 km long,
10 m wide lead in the middle of the domain with h= 0 m
and A= 0. The model is run at resolutions of 10, 20, 40, . . .
1280 m. For these lower resolutions, the h and A fields are
obtained through a coarse-graining procedure (see Fig. 7 for
details).

All the values of p and q in the 5 km× 5 km domain are
plotted as a function of 1x in Fig. 8a and b. The distribu-
tion of these small-scale stresses are non-symmetric (they are
limited by 0 on one side) and are skewed toward large values.
These results constitute another validation of the numerical
framework as the distribution reduces to a single point equal
to the large-scale values prescribed at the boundaries as 1x
tends toward the horizontal dimension of the domain.

6.2 Experiments with an idealized ship

In a second set of experiments, we investigate the small-scale
pressure field in the vicinity of a ship in heavy sea ice con-
ditions and under compressive stresses. Importantly, we esti-
mate the maximum pressure applied on the ship in different
idealized experiments. The small-scale pressure field around
a ship 90 m long and 30 m wide is investigated. We assume
that the ship was navigating in level ice 2 m thick and that it
is now beset. First, it is assumed that a lead (i.e. a channel)
created by the ship is still open behind it over a distance of
600 m, while farther away the lead has been closed due to re-
sulting sea ice convergence. The pressure field for this exper-
iment is shown in Fig. 9a and with more details in Fig. 9b.
Similar to our previous results without a ship, larger pres-
sures are found at the tips of the lead. In fact, there is very
large pressure on both sides of the ship, especially at the back
of the ship. Numerical simulations of ships navigating in sea
ice show larger pressure at the front of the ship (e.g. Kubat
et al., 2010; Sayed et al., 2017). However, our results show

Figure 8. All the values of pressure (a) and of the shear stress in-
variant (b) in the 5 km× 5 km domain as a function of resolution.
The thickness field is 2 m everywhere except a 1 km long, 10 m
wide horizontal lead in the middle of the domain. The thickness and
concentration fields at the other resolutions are obtained through a
coarse-graining procedure. The normal stresses at the boundaries
are −10 kNm−1.

the opposite for a ship that is beset. These results also sug-
gest that by navigating in these compact ice conditions, the
ship has generated these high-pressure conditions by creating
a lead in its wake.

A crucial aspect to consider here is the length of the lead
behind the ship. Assuming the lead closes at a shorter dis-
tance from the ship should imply smaller pressure values (for
the same pressure applied at the boundaries). This is indeed
the case as demonstrated by the sensitivity study shown in
Fig. 10 (blue curve). We also consider the case of a lead par-
tially consolidated. In fact, we assume that the concentration
(A) is 0 just behind the ship and that it increases linearly to
1.0 for a certain lead length. The (mean) thickness h of the
ice is set equal to Ahl. This appears to have a very small ef-
fect on our results (not shown) compared to the case with
A= 0 everywhere in the lead (blue curve in Fig. 10). This
is due to the fact that the ice strength (see Eq. 7) decreases
rapidly as A diminishes. However, if we consider that the ice
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Figure 9. Pressure field at 10 m resolution when including a digi-
tized ship 90 m long and 30 m wide (in grey). The thickness field is
2 m everywhere except a 600 m long lead behind the ship. The nor-
mal stresses at the boundaries are −10 kNm−1. The whole domain
is shown in (a), while (b) shows a zoom of the pressure field around
the ship.

Figure 10. Maximum pressure (kNm−1) on the ship as a function
of the length of the lead behind the ship. The thickness field is 2 m
everywhere except in the lead behind the ship; the thickness of the
refrozen lead (hrf ) is 0 cm for the blue curve, it is 10 cm for the
orange one, and it is 20 cm for the magenta one. The digitized ship
is 90 m long and 30 m wide. The normal stresses at the boundaries
are −10 kNm−1.

Figure 11. Maximum pressure (kNm−1) on the ship as a func-
tion of the pressure (pb) prescribed at the boundaries. For both
curves, it is assumed that the length of the lead (L) is 600 m for
pb= 0 kNm−1 and that it decreases linearly as pb increases. For the
blue, the lead behind the ship is closed when pb reaches 20 kNm−1,
while the lead is closed when pb= 15 kNm−1 for the magenta
curve. The thickness field is 2 m everywhere except in the lead be-
hind the ship, where the thickness is 0 m. The digitized ship is 90 m
long and 30 m wide.

in the lead is consolidating through thermodynamical growth
(i.e. we set h to a small value in the lead behind the ship),
we find that this notably reduces the stress applied on the
ship. This can be seen with the orange and magenta curves in
Fig. 10, which, respectively, correspond to thicknesses of 0.1
and 0.2 m for the refrozen lead.

Figure 10 shows that, for a certain large-scale pressure ap-
plied at the boundaries, the length of the lead behind the ship
has a strong impact on the maximum pressure applied on the
ship. Even though it is unclear how long the lead should be
for a given hl and for a given large-scale pressure, it is real-
istic to suppose that the higher the pressure is at the bound-
aries, the shorter the lead is (i.e. it has closed over a certain
distance due to the compressive stresses). Note that this is
what is usually assumed for ships navigating in sea ice under
compressive stresses (see for example Suominen and Kujala,
2012). In this last experiment, with results shown in Fig. 11,
it is therefore assumed that the lead is 600 m long when the
pressure at the boundaries is 0 kNm−1 and that it decreases
linearly to 0 m when the pressure reaches 20 kNm−1 (blue
curve) or when it reaches 15 kNm−1 (magenta curve). The
relation between the lead length L and the pressure at the
boundaries pb is therefore L=−30pb+ 600 for the blue
curve and L=−40pb+ 600 for the magenta one. We there-
fore consider here that the lead has consolidated mechani-
cally and that there is no thermodynamical growth. Figure 11
roughly exhibits three different regimes. In the first regime,
for small pressure at the boundaries (i.e. long lead length),
the maximum pressure on the ship is linearly related to pb be-
cause it is independent of lead length. In the second regime,
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for large pressure at the boundaries (i.e. small lead length),
the maximum pressure is most sensitive to the lead length,
and we see again a linear dependence, with a negative slope,
on pb. In between, in the third regime, two compensating
effects are playing out: a larger pressure at the boundaries
causes the lead to be shorter, which decreases the stress con-
centration in the vicinity of the ship, making the maximum
pressure weakly sensitive to the pressure at the boundary.

7 Conclusions

We have investigated how sea ice pressure could be down-
scaled at scales relevant for navigation. The distribution of
pressure at small scales is associated with non-uniform sea
ice conditions. The PDF of the small-scale pressure is non-
symmetric (it is limited by 0 on one side) and is skewed to-
ward large values. Our results indicate that what really de-
termines the largest values of pressure is associated with de-
fects, that is long leads. Because a lead itself is not able to
sustain any stress (unless it has refrozen), the load is taken
by the ice around the lead with especially large values of the
stresses in the vicinity of the tips. A sensitivity study indi-
cates that the small-scale distribution and maximum pressure
are notably affected by the choice of the shear strength (e)
and compressive strength (P ∗) for the elliptical yield curve.
This suggests that a different yield curve and different me-
chanical strength properties would also lead to significantly
different results.

Idealized experiments with a digitized ship beset in heavy
sea ice conditions show that stress concentration also occurs
in the vicinity of the ship. In fact, our simulations show that
the largest pressure applied on the ship is found on both sides
at the back of the ship. These results are different than the
ones of Kubat et al. (2010) and Sayed et al. (2017) because
our idealized ship is beset, while they considered a digitized
ship progressing in looser ice conditions.

We also argue that the ship itself is responsible for the
strong concentration of stress on its side; the lead (or chan-
nel) it created by navigating in sea ice causes these large val-
ues of the stresses. Moreover, it is found that even a short
lead causes pressure values notably larger than the pressure
applied at the domain boundaries. The stresses on the ship
should decrease as the ice in the lead consolidates (by either
thermodynamical growth or closing of the lead). These con-
clusions highlight the difficulty of providing sub-grid-scale
pressure forecasts for navigation applications as the impor-
tant parameters (i.e. the length of the lead and the thickness
of the refrozen ice) are not well constrained.

A significant advantage of our numerical framework is that
stresses can be specified at the boundaries. However, it is also
important to note its limitations. First, it can only calculate
the pressure field for a ship beset in heavy sea ice condi-
tions; it cannot simulate the sea ice stresses applied on a ship
navigating in ice-infested waters (as in Kubat et al., 2010).
Also, in reality, sea ice convergence can cause ridging, which
can locally increase the yield strength of the ice. This strain
hardening process was not considered in our numerical ex-
periments; the maximum possible pressure in the domain is
equal to P ∗hl. Another possible limitation of our numerical
framework is that the ice is modelled as a continuum mate-
rial rather than a collection of discrete particles. It would be
very interesting to still apply stresses at the boundaries but to
model the interactions between the sea ice and the idealized
ship with a model based on discrete floes (e.g. Daley et al.,
2014; Metrikin and Løset, 2013).

In our numerical experiments, the digitized ship is sim-
ply represented as a rigid body with no outflow and no slip
boundary conditions applied on the contour. A more realistic
numerical framework should also involve a better representa-
tion of ship–ice interactions. For example, as done by Kubat
et al. (2010), a Coulomb friction condition could be applied
on the ship contour.

Although the convergence criterion for the steady-state so-
lution of the velocity field has been reached in all the numer-
ical experiments described in this paper, it is worth mention-
ing that this came with tremendous difficulties for the JFNK
solver; the non-linear convergence was really slow, and the
solver failed on some occasions to reach the required drop
in the Euclidean norm of the residual within the allowed
500 non-linear iterations. Lemieux et al. (2010) have already
shown that the JFNK solver exhibits robustness issues as the
grid is refined. In fact, it is really the number of unknowns
that impacts the non-linear convergence and robustness of
the JFNK solver. This clearly indicates that innovations and
more sophisticated numerical methods (e.g. Mehlmann and
Richter, 2017) would be very beneficial for the sea ice mod-
elling community.
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Appendix A: Stability analysis

A few observations were made concerning the numerical sta-
bility of our new numerical framework with stresses applied
at the boundaries. In this appendix, we discuss and provide
explanations for these limitations.

1. We have noticed that for a simulation to be numerically
stable, σW should be equal to σE, σ S should be equal to
σN, and all the shear stresses at the boundaries should
have the same value (i.e. τW

= τE
= τS

= τN). This can
be easily understood by considering the ice in the do-
main as a single piece of ice. Assuming there is no shear
stress, the sum of the forces applied on the ice along the
x axis are∑

Fx = σ
W1x− σE1x. (A1)

For stability,
∑
Fx should be 0 so that the ice does not

accelerate indefinitely. This means that σW should be
equal to σE. The same conclusion applies for σ S and
σN. Finally, a similar argument can be made for the
shear stresses in terms of conservation of angular mo-
mentum. Interestingly, these conditions are the same
ones found for the Cauchy tensor for the stresses at a
point.

2. Dukowicz (1997) mentions that for numerical stability,
the internal stresses should be 0 at open boundaries,
while our simulations show that it is possible to obtain
stable solutions with non-zero stresses prescribed at the
boundaries. To understand this, we revisit the stability
analysis described in Dukowicz (1997). As Dukowicz
(1997), we consider a simplified 1D momentum equa-
tion. However, we also take into account the replace-
ment method. With these considerations, our 1D mo-
mentum equation is given by

ρh
∂u

∂t
=
∂σ

∂x
. (A2)

For stability, the rheology term should dissipate kinetic
energy (KE). To investigate this, we multiply Eq. (A2)
by u and integrate it over the whole domain (x = 0, i.e.
the west side, and x = L, i.e. the east side of our do-
main).

L∫
0

uρh
∂u

∂t
dx =

L∫
0

u
∂σ

∂x
dx (A3)

As advection and thermodynamics are not considered,
the thickness field is constant in time, and we can write

L∫
0

∂

∂t

(
ρhu2

2

)
dx =

L∫
0

u
∂σ

∂x
dx. (A4)

In 1D, σ = α2ζ ε̇I− ζ1 with ζ =
Pp

21∗ , 1∗ =

min(1,1min), ε̇I =
∂u
∂x

and 1= α|ε̇I| with
α =
√

1+ e−2.

The term on the right can be integrated by parts, that is

L∫
0

u
∂σ

∂x
dx = [uσ ]L0 −

L∫
0

∂u

∂x
σdx, (A5)

∂

∂t

L∫
0

(
ρhu2

2

)
dx = uLσL− u0σ0

−

L∫
0

(
α2ζ ε̇2

I − ε̇Iζ1
)

dx, (A6)

where the time derivative has been moved outside
the integral because the region of integration is fixed
(Dukowicz, 1997). Note that uL = u|x=L (same idea for
the other terms). The integral on the left is the total KE.
From our results above we know that σL has to be equal
to σ0. By symmetry, we can also assume that uL =−u0.
Hence, with the definition of the viscous coefficient, we
can then write Eq. (A6) as

∂

∂t
KE =−2u0σ0−

L∫
0

αPp

21∗

(
αε̇2

I − ε̇I|ε̇I|
)

dx. (A7)

For the second term on the right,
(
αε̇2

I − ε̇I|ε̇I|
)
=

ε̇2
I (α− 1) if ε̇I is positive (divergence), while it is equal

to ε̇2
I (α+ 1) if ε̇I is negative (convergence). As α ≥ 1,

this means that the integral is always positive, and the
term therefore always dissipates KE because of the mi-
nus sign in front of it. As opposed to the derivation of
Dukowicz (1997), the replacement method is also con-
sidered here. Nevertheless, consistent with his results,
we find that the second term on the right always dissi-
pates KE.

The stability therefore depends on the boundary term
−2u0σ0. The worst condition happens when there are
high compressive stresses at the boundaries. In this case,
σ0 =−|σ0|< 0 and u0 > 0 such that 2u0|σ0| is a source
of KE. For high compressive stresses, we assume that
the ice is in the plastic regime. To be able to evaluate
the integral on the right in Eq. (A7), we also look at
a simple case with Pp that is constant over the whole
domain. With these assumptions we find

∂

∂t
KE = 2u0|σ0| −

αPp

2

L∫
0

ε̇2
I
|ε̇I|

dx+
Pp

2

L∫
0

ε̇Idx. (A8)
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With ε̇2
I /|ε̇I| = |ε̇I| = −ε̇I, because ε̇I < 0, we can then

write

∂

∂t
KE = 2u0|σ0| +

αPp

2

L∫
0

ε̇Idx+
Pp

2

L∫
0

ε̇Idx. (A9)

With
∫ L

0 ε̇Idx =
∫ L

0
∂u
∂x

dx = uL− u0 =−2u0 we obtain

∂

∂t
KE = 2u0|σ0| − (α+ 1)Ppu0. (A10)

This means that |σ0| should be smaller than the com-
pressive strength (α+ 1)Pp/2 for the solution to be sta-
ble (i.e. the rheology term dissipates KE). A similar
analysis can be conducted if we assume a tensile stress
at the boundaries. In this case, we find that the stress
|σ0| at the boundaries should be smaller than the tensile
strength (α− 1)Pp/2.

To ensure numerical stability, Dukowicz (1997) men-
tions that the stresses should be 0 at the open bound-
aries. This is a stricter condition than the one we find
here. We have indeed demonstrated that the solution is
stable as long as the stresses prescribed at the bound-
aries are between the compressive and tensile strengths
of the ice. Numerical experiments (in 2D) confirm this
finding. For example, when prescribing normal stresses
of −10 kNm−1 on a uniform sea ice cover, the solution
is stable if hl > 10kNm−1/P ∗ (not shown).
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