Brodzik, M., Long, D., Hardman, M., Paget, A., and Armstrong, R.: MEaSUREs
Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0
Brightness Temperature ESDR, Version 1,
https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001,
2016 (updated 2018).
a
Bunzel, F., Notz, D., Baehr, J., Müller, W., and Fröhlich, K.: Seasonal
climate forecasts significantly affected by observational uncertainty of
Arctic sea ice concentration, Geophys. Res. Lett., 43, 852–859,
https://doi.org/10.1002/2015GL066928, 2016.
a,
b,
c,
d
Burgard, C., Notz, D., Pedersen, L. T., and Tonboe, R. T.: The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output, The Cryosphere, 14, 2369–2386,
https://doi.org/10.5194/tc-14-2369-2020, 2020.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Cavalieri, D., Burns, B., and Onstott, R.: Investigation of the effects of
summer melt on the calculation of sea ice concentration using active and
passive microwave data, J. Geophys. Res.-Oceans, 95, 5359–5369,
https://doi.org/10.1029/JC095iC04p05359, 1990.
a
Cavalieri, D. J., Parkinson, C., Gloersen, P., and Zwally, H.: Sea ice
concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave
data, version 1,
https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
a
Chang, T. and Gloersen, P.: Microwave Emission from dry and wet snow, in:
Operational Applications of Satellite Snowcover Observations, edited by:
Rango, A., chap. 27, NASA, 399–407, 1975. a
Comiso, J. and Kwok, R.: Surface and radiative characteristics of the summer
Arctic sea ice cover from multisensor satellite observations, J. Geophys.
Res.-Oceans, 101, 28397–28416,
https://doi.org/10.1029/96JC02816, 1996.
a,
b
Comiso, J., Cavalieri, D., Parkinson, C., and Gloersen, P.: Passive Microwave
Algorithms for Sea Ice Concentration: A Comparison of Two Techniques, Remote
Sens. Environ., 60, 357–384,
https://doi.org/10.1016/S0034-4257(96)00220-9, 1997.
a
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hersbach, H., Holm, E.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.,
Monge-Sanz, B., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thébaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
a
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res.-Oceans, 99, 10143–10162,
https://doi.org/10.1029/94JC00572, 1994.
a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.
a
Eyring, V., Cox, P., Flato, G., Gleckler, P., Abramowitz, G., Caldwell, P.,
Collins, W., Gier, B., Hall, A., Hoffman, F., Hurtt, G., Jahn, A., Jones, C.,
Klein, S., Krasting, J., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G.,
Pendergrass, A., Pincus, R., Ruane, A., Russell, J., Sanderson, B., Santer,
B., Sherwood, S., Simpson, I., Stouffer, R., and Williamson, M.: Taking
climate model evaluation to the next level, Nat. Clim. Change, 9, 102–110,
https://doi.org/10.1038/s41558-018-0355-y, 2019.
a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, book section 9, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
741–866,
https://doi.org/10.1017/CBO9781107415324.020, 2013.
a
Giorgetta, M., Roeckner, E., Mauritsen, T., Bader, J., Crueger, T., Esch, M.,
Rast, S., Kornblueh, L., Schmidt, H., Kinne, S., Hohenegger, C., Möbis,
B., Krismer, T., Wieners, K., and Stevens, B.: The atmospheric general
circulation model ECHAM6: Model description, Tech. Rep. Reports on Earth
System Science, 135/2013, Max Planck Institute for Meteorology, 2013.
a,
b
Hallikainen, M. and Winebrenner, D.: The Physical Basis for Sea Ice Remote
Sensing, in: Microwave Remote Sensing of Sea Ice, edited by: Carsey, F.,
chap. 4, American Geophysical Union, 29–46, 1992. a
Hallikainen, M., Ulaby, F., and Abdelrazik, M.: Dielectric properties of snow
in the 3 to 37 GHz range, IEEE T. Antenn. Propag., 34, 1329–1340,
https://doi.org/10.1109/TAP.1986.1143757, 1986.
a
Hibler, W.: A Dynamic Thermodynamic Sea Ice Model, J. Phys. Oceanogr., 9,
815–846, 1979. a
Hunt, B., Kostelich, E., and Szunyogh, I.: Efficient data assimilation for
spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D,
230, 112–126,
https://doi.org/10.1016/j.physd.2006.11.008, 2007.
a
Istomina, L., Heygster, G., Huntemann, M., Marks, H., Melsheimer, C., Zege, E., Malinka, A., Prikhach, A., and Katsev, I.: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011, The Cryosphere, 9, 1567–1578,
https://doi.org/10.5194/tc-9-1567-2015, 2015a.
a,
b,
c
Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., Polashenski, C., Perovich, D., Zege, E., Malinka, A., Prikhach, A., and Katsev, I.: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 1: Validation against in situ, aerial, and ship cruise data, The Cryosphere, 9, 1551–1566,
https://doi.org/10.5194/tc-9-1551-2015, 2015b.
a,
b
Ivanova, N., Johannessen, O. M., Pedersen, L. T., and Tonboe, R. T.: Retrieval
of Arctic Sea Ice Parameters by Satellite Passive Microwave
Sensors: A Comparison of Eleven Sea Ice Concentration
Algorithms, IEEE T. Geosci. Remote, 52, 7233–7246,
https://doi.org/10.1109/TGRS.2014.2310136, 2014.
a,
b,
c
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817,
https://doi.org/10.5194/tc-9-1797-2015, 2015.
a,
b,
c,
d
Jakobson, E., Vihma, T., Keernik, H., and Jaagus, J.: Validation of atmospheric
reanalyses over the central Arctic Ocean, Geophys. Res. Lett., 39, L10802,
https://doi.org/10.1029/2012GL051591, 2012.
a
Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J.: Characteristics of the ocean
simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model Earth Sy., 5,
422–446,
https://doi.org/10.1002/jame.20023, 2013.
a,
b
Kern, S., Rösel, A., Pedersen, L. T., Ivanova, N., Saldo, R., and Tonboe, R. T.: The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations, The Cryosphere, 10, 2217–2239,
https://doi.org/10.5194/tc-10-2217-2016, 2016.
a,
b,
c
Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., and Sørensen, A. M.: Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations, The Cryosphere, 13, 3261–3307,
https://doi.org/10.5194/tc-13-3261-2019, 2019.
a,
b,
c
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78,
https://doi.org/10.5194/tc-13-49-2019, 2019.
a,
b,
c
Lee, S.-M., Sohn, B.-J., and Shi, H.: Impact of ice surface and volume
scatterings on the microwave sea ice apparent emissivity, J. Geophys.
Res.-Atmos., 123, 9220–9237,
https://doi.org/10.1029/2018JD028688, 2018.
a
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of Seven
Different Atmospheric Reanalysis Products in the Arctic, J. Climate, 27,
2588–2606,
https://doi.org/10.1175/JCLI-D-13-00014.1, 2014.
a,
b
Meier, W. and Notz, D.: A note on the accuracy and reliability of
satellite-derived passive microwave estimates of sea-ice extent, CliC Arctic
sea ice working group consensus document, World Climate Research Program,
2010. a
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S.,
King, J., Ricker, R., and Else, B.: Effect of Snow Salinity on CryoSat-2
Arctic First-Year Sea Ice Freeboard Measurements, Geophys. Res. Lett., 44,
419–426,
https://doi.org/10.1002/2017GL074506, 2017.
a
NASDA: AMSR-E Data Users Handbook, Tech. Rep. NCX-030021, Earth Observation
Center, National Space Development Agency of Japan, Japan, 2003. a
Notz, D.: Thermodynamic and Fluid-Dynamical Processes in Sea Ice, PhD thesis,
University of Cambridge, 2005.
a,
b
Notz, D., Haumann, A., Haak, H., and Marotzke, J.: Arctic sea-ice evolution as
modeled by Max Planck Institute for Meteorology's Earth system model, J. Adv.
Model Earth Sy., 5, 173–194,
https://doi.org/10.1002/jame.20016, 2013.
a,
b,
c
Pedersen, L., Saldo, R., Ivanova, N., Kern, S., Heygster, G., Tonboe, R.,
Huntemann, M., Ozsoy, B., Ardhuin, F., and Kaleschke, L.: Reference dataset
for sea ice concentration, Figshare,
https://doi.org/10.6084/m9.figshare.6626549.v6,
2018.
a
Pounder, E.: The Physics of Ice, Elsevier, 1st Edn., 1965. a
Richter, F., Drusch, M., Kaleschke, L., Maaß, N., Tian-Kunze, X., and Mecklenburg, S.: Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models, The Cryosphere, 12, 921–933,
https://doi.org/10.5194/tc-12-921-2018, 2018.
a,
b,
c
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas,
C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and
SMOS satellite data, Cryosphere, 11, 1607–1623,
https://doi.org/10.5194/tc-11-1607-2017, 2017.
a
Roeckner, E., Mauritsen, T., Esch, M., and Brokopf, R.: Impact of melt ponds on
Arctic sea ice in past and future climates as simulated by MPI-ESM, J. Adv.
Model Earth Sy., 4,
https://doi.org/10.1029/2012MS000157, 2012.
a,
b
Rösel, A., Kaleschke, L., and Birnbaum, G.: Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network, The Cryosphere, 6, 431–446,
https://doi.org/10.5194/tc-6-431-2012, 2012a.
a,
b,
c
Rösel, A., Kaleschke, L., and Kern, S.: Influence of melt ponds on
microwave sensors' sea ice concentration retrieval algorithms, 2012 IEEE
International Geoscience and Remote Sensing Symposium, 3261–3264,
https://doi.org/10.1109/IGARSS.2012.6350608, 2012b.
a
Scott, K. A., Buehner, M., Caya, A., and Carrieres, T.: Direct Assimilation
of AMSR-E Brightness Temperatures for Estimating Sea Ice
Concentration, Mon. Weather Rev., 140, 997–1013,
https://doi.org/10.1175/MWR-D-11-00014.1, 2012.
a
Shokr, M. and Sinha, N.: Remote Sensing Principles Relevant to Sea Ice, in: Sea
Ice: Physics and Remote Sensing, Geophysical Monograph 209, First Edn.,
American Geophysical Union, chap. 7, John Wiley & Sons, Inc., 271–335,
2015.
a,
b,
c
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model Earth Sy., 5, 146–172,
https://doi.org/10.1002/jame.20015, 2013.
a
Talagrand, O. and Courtier, P.: Variational Assimilation of Meteorological
Observations With the Adjoint Vorticity Equation. I: Theory, Q. J. Roy.
Meteor. Soc., 113, 1311–1328,
https://doi.org/10.1002/qj.49711347812, 1987.
a
Tietsche, S., Notz, D., Jungclaus, J. H., and Marotzke, J.: Assimilation of sea-ice concentration in a global climate model – physical and statistical aspects, Ocean Sci., 9, 19–36,
https://doi.org/10.5194/os-9-19-2013, 2013.
a
Tonboe, R., Andersen, S., Toudal, L., and Heygster, G.: Sea ice emission
modelling, in: Thermal Microwave Radiation - Applications for Remote Sensing,
edited: by Mätzler, C., Rosenkranz, P., Battaglia, A., and Wigneron, J.,
IET Electromagnetic Waves Series 52, 382–400, 2006. a
Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rathmann, N., Dybkjær, G., Pedersen, L. T., Høyer, J. L., and Kern, S.: The EUMETSAT sea ice concentration climate data record, The Cryosphere, 10, 2275–2290,
https://doi.org/10.5194/tc-10-2275-2016, 2016.
a
Ulaby, F., Moore, R., and Fung, A.: Passive microwave sensing of the ocean, in:
Microwave Remote Sensing, Active and Passive Volume III, From Theory to
Applications, chap. 18, Artech House, Inc., 1412–1521, 1986.
a,
b,
c
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Morales Maqueda, M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice. 1. Model description and validation, Ocean Model., 27,
33–53,
https://doi.org/10.1016/j.ocemod.2008.10.005, 2009.
a
Wentz, F. and Meissner, T.: Algorithm theoretical basis document (atbd),
version 2, Tech. Rep. AMSR Ocean Algorithm, RSS Tech. Proposal 121599A-1,
Remote Sensing Systems, Santa Rosa, CA, 2000.
a,
b