Articles | Volume 14, issue 6
Research article
24 Jun 2020
Research article |  | 24 Jun 2020

Spectral attenuation of ocean waves in pack ice and its application in calibrating viscoelastic wave-in-ice models

Sukun Cheng, Justin Stopa, Fabrice Ardhuin, and Hayley H. Shen

Related authors

Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754,,, 2023
Short summary
Wave energy attenuation in fields of colliding ice floes – Part 1: Discrete-element modelling of dissipation due to ice–water drag
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2887–2900,,, 2019
Short summary
Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2901–2914,,, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Rapid sea ice changes in the future Barents Sea
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456,,, 2023
Short summary
Causes and evolution of winter polynyas north of Greenland
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253,,, 2023
Short summary
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156,,, 2023
Short summary
Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635,,, 2022
Short summary
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248,,, 2022
Short summary

Cited articles

Ardhuin, F., Stopa, J., Chapron, B., Collard, F., Smith, M., Thomson, J., Doble, M., Blomquist, B., Persson, O., Collins III, C. O., and Wadhams P.: Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data, Remote Sens. Environ., 189, 211–222, 2017. 
Ardhuin, F., Boutin, G., Stopa, J., Girard-Ardhuin, F., Melsheimer, C., Thomson, J., Kohout, A., Doble, M., and Wadhams, P.: Wave attenuation through an Arctic marginal ice zone on 12 October 2015: 2. Numerical modeling of waves and associated ice breakup, J. Geophys. Res.-Oceans, 123, 5652–5668, 2018. 
Bennetts, L. G. and Squire, V. A.: Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves, Ocean Model., 45, 1–13, 2012. 
Bennetts, L. G. and Williams, T. D.: Water wave transmission by an array of floating discs, P. Roy. Soc. A, 471, 20140698,, 2015. 
Bonjean, F. and Lagerloef, G. S. E.: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean, J. Phys. Oceanogr., 32, 2938–2954,<2938:DMAAOT>2.0.CO;2, 2002. 
Short summary
Wave states in ice in polar oceans are mostly studied near the ice edge. However, observations in the internal ice field, where ice morphology is very different from the ice edge, are rare. Recently derived wave data from satellite imagery are easier and cheaper than field studies and provide large coverage. This work presents a way of using these data to have a close view of some key features in the wave propagation over hundreds of kilometers and calibrate models for predicting wave decay.