Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1877-2019
https://doi.org/10.5194/tc-13-1877-2019
Research article
 | 
11 Jul 2019
Research article |  | 11 Jul 2019

Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations

Matt Trevers, Antony J. Payne, Stephen L. Cornford, and Twila Moon

Related authors

Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024,https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Quantifying the buttressing contribution of landfast sea ice and melange to Crane Glacier, Antarctic Peninsula
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024,https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024,https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024,https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
A new glacier thickness and bed map for Svalbard
Ward van Pelt and Thomas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2024-1525,https://doi.org/10.5194/egusphere-2024-1525, 2024
Short summary
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024,https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary

Cited articles

Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. 
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, P. Roy. Soc. Lond. A Mat., 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2012. 
Benn, D. I., Hulton, N. R., and Mottram, R. H.: “Calving laws”, “sliding laws” and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007a. 
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007b 
Benn, D. I., Aström, J., Todd, J., Nick, F. M., Hulton, N. R., and Luckman, A.: Melt-undercutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations, J. Glaciol., 63, 691–702, 2017. 
Download
Short summary
Iceberg calving is a major factor in the retreat of outlet glaciers of the Greenland Ice Sheet. Massive block overturning calving events occur at major outlet glaciers. A major calving event in 2009 was triggered by the release of a smaller block of ice from above the waterline. Using a numerical model, we investigate the feasibility of this mechanism to drive large calving events. We find that relatively small perturbations induce forces large enough to open cracks in ice at the glacier bed.