Research article 08 Nov 2018
Research article | 08 Nov 2018
Repeat mapping of snow depth across an alpine catchment with RPAS photogrammetry
Todd A. N. Redpath et al.
Related authors
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019, https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Angus J. Dowson, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 14, 3425–3448, https://doi.org/10.5194/tc-14-3425-2020, https://doi.org/10.5194/tc-14-3425-2020, 2020
Short summary
Short summary
Satellite observations over 19 years are used to characterise the spatial and temporal variability of surface albedo across the gardens of Eden and Allah, two of New Zealand’s largest ice fields. The variability in response of individual glaciers reveals the role of topographic setting and suggests that glaciers in the Southern Alps do not behave as a single climatic unit. There is evidence that the timing of the minimum surface albedo has shifted to later in the summer on 10 of the 12 glaciers.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019, https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.
Andreas M. Jobst, Daniel G. Kingston, Nicolas J. Cullen, and Josef Schmid
Hydrol. Earth Syst. Sci., 22, 3125–3142, https://doi.org/10.5194/hess-22-3125-2018, https://doi.org/10.5194/hess-22-3125-2018, 2018
Lucas Davaze, Antoine Rabatel, Yves Arnaud, Pascal Sirguey, Delphine Six, Anne Letreguilly, and Marie Dumont
The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, https://doi.org/10.5194/tc-12-271-2018, 2018
Short summary
Short summary
About 150 of the 250 000 inventoried glaciers are currently monitored with surface mass balance (SMB) measurements. To increase this number, we propose a method to retrieve annual and summer SMB from optical satellite imagery, with an application over 30 glaciers in the French Alps. Computing the glacier-wide averaged albedo allows us to reconstruct annual and summer SMB of most of the studied glaciers, highlighting the potential of this method to retrieve SMB of unmonitored glaciers.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016, https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Short summary
Fourteen years of satellite observations are used to monitor the albedo of Brewster Glacier, New Zealand and estimate annual and seasonal balances. This confirms the governing role of the summer balance in the annual balance and allows the reconstruction of the annual balance to 1977 using a photographic record of the snowline. The longest mass balance record for a New Zealand glacier shows negative balances after 2008, yielding a loss of 35 % of the gain accumulated over the previous 30 years.
J. P. Conway and N. J. Cullen
The Cryosphere, 10, 313–328, https://doi.org/10.5194/tc-10-313-2016, https://doi.org/10.5194/tc-10-313-2016, 2016
Short summary
Short summary
Clouds are shown to force fundamental changes in the surface energy and mass balance of Brewster Glacier, New Zealand. Cloudy periods exhibit greater melt due to increased incoming long-wave radiation and higher atmospheric vapour pressure rather than through minimal changes in mean air temperature and wind speed. Surface mass-balance sensitivity to air temperature is enhanced in overcast compared to clear-sky periods due to more frequent melt and a strong precipitation phase to albedo feedback.
F. Brun, M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al. Ramanathan
The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015, https://doi.org/10.5194/tc-9-341-2015, 2015
C. L. Stevens, P. Sirguey, G. H. Leonard, and T. G. Haskell
The Cryosphere, 7, 1333–1337, https://doi.org/10.5194/tc-7-1333-2013, https://doi.org/10.5194/tc-7-1333-2013, 2013
N. J. Cullen, P. Sirguey, T. Mölg, G. Kaser, M. Winkler, and S. J. Fitzsimons
The Cryosphere, 7, 419–431, https://doi.org/10.5194/tc-7-419-2013, https://doi.org/10.5194/tc-7-419-2013, 2013
M. Dumont, J. Gardelle, P. Sirguey, A. Guillot, D. Six, A. Rabatel, and Y. Arnaud
The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012, https://doi.org/10.5194/tc-6-1527-2012, 2012
Related subject area
Discipline: Snow | Subject: Remote Sensing
Snow depth time series retrieval by time-lapse photography: Finnish and Italian case studies
Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping
Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain
Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
Mapping avalanches with satellites – evaluation of performance and completeness
Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions
Shallow snow depth mapping with unmanned aerial systems lidar observations: A case study in Durham, New Hampshire, United States
Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan
Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards
Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos
On the reflectance spectroscopy of snow
On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales
Marco Bongio, Ali Nadir Arslan, Cemal Melih Tanis, and Carlo De Michele
The Cryosphere, 15, 369–387, https://doi.org/10.5194/tc-15-369-2021, https://doi.org/10.5194/tc-15-369-2021, 2021
Short summary
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-272, https://doi.org/10.5194/tc-2020-272, 2020
Revised manuscript accepted for TC
Short summary
Short summary
Satellites prove to be very valuable for the documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical and one radar sensor. Our results demonstrate the reliability of high spatial resolution optical data for avalanche mapping, the suitability of radar for the mapping of larger avalanches and the unsuitability of medium spatial resolution optical data.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Carlo Marin, Giacomo Bertoldi, Valentina Premier, Mattia Callegari, Christian Brida, Kerstin Hürkamp, Jochen Tschiersch, Marc Zebisch, and Claudia Notarnicola
The Cryosphere, 14, 935–956, https://doi.org/10.5194/tc-14-935-2020, https://doi.org/10.5194/tc-14-935-2020, 2020
Short summary
Short summary
In this paper, we use for the first time the synthetic aperture radar (SAR) time series acquired by Sentinel-1 to monitor snowmelt dynamics in alpine regions. We found that the multitemporal SAR allows the identification of the three phases that characterize the melting process, i.e., moistening, ripening and runoff, in a spatial distributed way. We believe that the presented investigation could have relevant applications for monitoring and predicting the snowmelt progress over large regions.
Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, Elizabeth A. Burakowski, Christina Herrick, and Eunsang Cho
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-37, https://doi.org/10.5194/tc-2020-37, 2020
Revised manuscript accepted for TC
Short summary
Short summary
This pilot study describes a proof-of-concept for using a UAV lidar system to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar derived digital terrain models, consistently had 0.5 to 1 cm precision in the field with modestly reduced accuracy in the forest and heavily vegetated areas. Performance depends on the point cloud density and the ground surface variability and vegetation.
Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot
The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, https://doi.org/10.5194/tc-14-331-2020, 2020
Short summary
Short summary
Ice and snowmelt feed the Indus River and Amu Darya, but validation of estimates from satellite sensors has been a problem until recently, when we were given daily snow depth measurements from these basins. Using these measurements, estimates of snow on the ground were created and compared with models. Estimates of water equivalent in the snowpack were mostly in agreement. Stratigraphy was also modeled and showed 1 year with a relatively stable snowpack but another with multiple weak layers.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-280, https://doi.org/10.5194/tc-2019-280, 2020
Revised manuscript accepted for TC
Short summary
Short summary
Daily time-series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the observations from optical satellite sensors are seriously affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25-km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019, https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Short summary
We investigate the influence of ocean–atmosphere teleconnections on the start, end, and duration of snow cover in British Columbia, Canada. We do this using daily satellite imagery from 2002 to 2018 and assess the accuracy of our methods using reported snow cover at 60 weather stations. We found that there are very strong relationships that vary by region and elevation. This improves our understanding of snow cover distribution and could be used to predict snow cover from ocean–climate indices.
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Short summary
Snow on sea ice is a fundamental climate variable. We propose a novel approach to estimate snow depth on sea ice from satellite microwave radiometer measurements at several frequencies using neural networks (NNs). We evaluate our results with airborne snow depth measurements and compare them to three other established snow depth algorithms. We show that our NN results agree better with the airborne data than the other algorithms. This is also advantageous for sea ice thickness calculation.
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019, https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary
Short summary
The Chinese ski industry is rapidly booming driven by enormous market demand and government support with the coming 2022 Beijing Winter Olympics. We evaluate the locational suitability of ski areas in China by integrating the natural and socioeconomic conditions. Corresponding development strategies for decision-makers are proposed based on the multi-criteria metrics, which will be extended to incorporate potential influences from future climate change and socioeconomic development.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby
The Cryosphere, 12, 3535–3550, https://doi.org/10.5194/tc-12-3535-2018, https://doi.org/10.5194/tc-12-3535-2018, 2018
Short summary
Short summary
The use of lightweight UAV-based surveys of surface elevation to map snow depth and weekly snow depth change was evaluated over five study areas spanning a range of topography and vegetation cover. Snow depth was estimated with an accuracy of better than 10 cm in the vertical and 3 cm in the horizontal. Vegetation in the snow-free elevation map was a major source of error. As a result, the snow depth change between two dates with snow cover was estimated with an accuracy of better than 4 cm.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Stefan Härer, Matthias Bernhardt, Matthias Siebers, and Karsten Schulz
The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018, https://doi.org/10.5194/tc-12-1629-2018, 2018
Short summary
Short summary
The paper presents an approach which can be used to process satellite-based snow cover maps with a higher-than-today accuracy at the local scale. Many of the current satellite-based snow maps are using the NDSI with a threshold as a tool for deciding if there is snow on the ground or not. The presented study has shown that, firstly, using the standard threshold of 0.4 can result in significant derivations at the local scale and that, secondly, the deviations become smaller for coarser scales.
Cited articles
Albani, M. and Klinkenberg, B.: A spatial filter for the removal of striping
artifacts in digital elevation models, Photogramm. Eng. Remote, 69, 755–765,
https://doi.org/10.14358/PERS.69.7.755, 2003.
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D.,
Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric accuracy in
snow depth using unmanned aerial system photogrammetry and a multistation,
Remote Sensing, 10, 1–16, https://doi.org/10.3390/rs10050765, 2018.
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier,
P.: Remote sensing estimates of glacier mass balances in the Himachal Pradesh
(Western Himalaya, India), Remote Sens. Environ., 108, 327–338,
https://doi.org/10.1016/j.rse.2006.11.017, 2007.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9
– Japan's New-Generation Geostationary Meteorological Satellites, J.
Meteorol. Soc. Jpn. Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Brown, D. C.: Close-range camera calibration, Photogramm. Eng., 37, 855–866,
1971.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow
depth in alpine terrain with unmanned aerial systems (UASs): potential and
limitations, The Cryosphere, 10, 1075–1088,
https://doi.org/10.5194/tc-10-1075-2016, 2016.
Bühler, Y., Adams, M. S., Stoffel, A., and Boesch, R.: Photogrammetric
reconstruction of homogenous snow surfaces in alpine terrain applying
near-infrared UAS imagery, Int. J. Remote Sens., 38, 3135–3158,
https://doi.org/10.1080/01431161.2016.1275060, 2017.
Cimoli, E., Marcer, M., Vandecrux, B., Bøggild, C. E., Williams, G., and Simonsen, S. B.: Application of Low-Cost UASs and Digital
Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic, Remote Sens., 9, 1142,
https://doi.org/10.3390/rs9111144, 2017.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B.,
Cullen, N. J., Kerr, T., Hreinsson, E. Ö., and Woods, R. A.:
Representing spatial variability of snow water equivalent in hydrologic and
land-surface models?: A review, Water. Resour. Res., 47, W07539,
https://doi.org/10.1029/2011WR010745, 2011.
Conway, J. P. and Cullen, N. J.: Cloud effects on surface energy and mass
balance in the ablation area of Brewster Glacier, New Zealand, The
Cryosphere, 10, 313–328, https://doi.org/10.5194/tc-10-313-2016, 2016
Cullen, N. J. and Conway, J. P.: A 22 month record of surface meteorology and
energy balance from the ablation zone of Brewster Glacier, New Zealand, J.
Glaciol., 61, 931–946, https://doi.org/10.3189/2015JoG15J004, 2015.
Cullen, N. J., Anderson, B., Sirguey, P., Stumm, D., Mackintosh, A., Conway,
J. P., Horgan, H. J., Dadic, R., Fitzsimons, S. J., and Lorrey, A.: An
11-year record of mass balance of Brewster Glacier, New Zealand, determined
using a geostatistical approach, J. Glaciol., 63, 199–217,
https://doi.org/10.1017/jog.2016.128, 2017.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow
depth: A review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154, 2013.
De Michele, C., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P.,
Ghezzi, A., Gianatti, R., and Della Vedova, G.: Using a fixed-wing UAS to map
snow depth distribution: an evaluation at peak accumulation, The Cryosphere,
10, 511–522, https://doi.org/10.5194/tc-10-511-2016, 2016.
Dozier, J.: Spectral signature of alpine snow cover from the Landsat Thematic
Mapper, Remote Sens. Environ., 22, 9–22, 1989.
Ebner, H. and Fritz, L.: Aerotriangulation, in: Manual of Photogrammetry, 4th
edn., edited by: Slama, C. C., American Society of Photogrammetry, Falls
Church, 453–518, 1980.
Fernandes, R., Prevost, C., Canisius, F., Leblanc, S. G., Maloley, M., Oakes,
S., Holman, K., and Knudby, A.: Monitoring snow depth change across a range
of landscapes with ephemeral snow packs using Structure from Motion applied
to lightweight unmanned aerial vehicle videos, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2018-82, in review, 2018.
Hall, D. K., Crawford, C. J., Di Girolamo, N. E., Riggs, G. A., and Foster,
J. L.: Detection of earlier snowmelt in the Wind River Range, Wyoming, using
Landsat imagery, 1972–2013, Remote Sens. Environ., 162, 45–54,
https://doi.org/10.1016/j.rse.2015.01.032, 2015.
Hall, D. K., Riggs, G. A., Salomonson, V. V, Di Girolamo, N. E., and Bayr, K.
J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194,
https://doi.org/10.1016/S0034-4257(02)00095-0, 2002.
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow
depth estimation in mountain and prairie environments by an unmanned aerial
vehicle, The Cryosphere, 10, 2559–2571,
https://doi.org/10.5194/tc-10-2559-2016, 2016.
Hirschmuller, H.: Accurate and efficient stereo processing by semi-global
matching and mutual information, IEEE. T. Pattern Anal., 2, 807–814,
https://doi.org/10.1109/CVPR.2005.56, 2008.
James, L. A., Hodgson, M. E., Ghoshal, S., and Latiolais, M. M.: Geomorphic
change detection using historic maps and DEM differencing: The temporal
dimension of geospatial analysis, Geomorphology, 137, 181–198,
https://doi.org/10.1016/j.geomorph.2010.10.039, 2012.
Kääb, A.: Remote Sensing of Mountain Glaciers and Permafrost Creep.
Zürich: Geographisches Institut der Universiturich, Zürich, 2005.
Kerr, T., Clark, M., Hendrikx, J., and Anderson, B.: Snow distribution in a
steep mid-latitude alpine catchment, Adv. Water Resour., 55, 17–24,
https://doi.org/10.1016/j.advwatres.2012.12.010, 2013.
Kinar, N. J. and Pomeroy, J. W.: Measurement of the physical properties of
the snowpack, Rev. Geophys., 53, 481–544, https://doi.org/10.1002/2015RG000481, 2015.
Lemmetyinen, J., Derksen, C., Rott, H., Macelloni, G., King, J., Schneebeli,
M., Wiesmann, A., Leppänen, L., Kontu, A., and Pulliainen, J.:
Retrieval of Effective Correlation Length and Snow Water Equivalent from
Radar and Passive Microwave Measurements, Remote Sens., 10, 170,
https://doi.org/10.3390/rs10020170, 2018.
Lindeberg, T.: Image Matching Using Generalized Scale-Space Interest Points,
J. Math. Imaging Vis., 52, 3–36, https://doi.org/10.1007/s10851-014-0541-0, 2015.
Linder, W.: Digital Photogrammetry: A Practical Course, 4th edn., Heidelberg,
Springer, 2016.
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E.,
García-Santos, G., Fernandes, R., and Berger, M.: Sentinels for science:
Potential of Sentinel-1, -2, and -3 missions for scientific observations of
ocean, cryosphere, and land, Remote Sens. Environ., 120, 91–101,
https://doi.org/10.1016/j.rse.2011.09.026, 2012.
Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., and Diffenbaugh, N.
S.: The potential for snow to supply human water demand in the present and
future, Environ. Res. Lett., 10, 114016, https://doi.org/10.1088/1748-9326/10/11/114016,
2015.
Marti, R., Gascoin, S., Berthier, E., de Pinel, M., Houet, T., and Laffly,
D.: Mapping snow depth in open alpine terrain from stereo satellite imagery,
The Cryosphere, 10, 1361–1380, https://doi.org/10.5194/tc-10-1361-2016,
2016.
Nolan, M., Larsen, C., and Sturm, M.: Mapping snow depth from manned aircraft
on landscape scales at centimeter resolution using structure-from-motion
photogrammetry, The Cryosphere, 9, 1445–1463,
https://doi.org/10.5194/tc-9-1445-2015, 2015.
Nolin, A. W. and Dozier, J.: Estimating snow grain size using AVIRIS data,
Remote Sens. Environ., 44, 231–238, https://doi.org/10.1016/0034-4257(93)90018-S, 1993.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of
satellite elevation data sets for quantifying glacier thickness change, The
Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J.
S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann, C.,
McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M. K., Seidel, F. C., and
Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar,
imaging spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152,
https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Revuelto, J., Vionnet, V., López-Moreno, J. I., Lafaysse, M., and Morin,
S.: Combining snowpack modeling and terrestrial laser scanner observations
improves the simulation of small scale snow dynamics, J. Hydrol., 533,
291–307, https://doi.org/10.1016/j.jhydrol.2015.12.015, 2016.
Rittger, K., Painter, T. H., and Dozier, J. : Assessment of methods for
mapping snow cover from MODIS, Adv. Water Resour., 51, 367–380,
https://doi.org/10.1016/j.advwatres.2012.03.002, 2013.
Roy, D. P., Wulder, M. A., Loveland, T. R., C.E., W., Allen, R. G., Anderson,
M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A.,
Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S.,
Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P.,
Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P.,
Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann,
J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product vision for
terrestrial global change research, Remote Sens. Environ., 145, 154–172,
https://doi.org/10.1016/j.rse.2014.02.001, 2014.
Sims, C. and Orwin, J. F.: Snowmelt generation on a hydrologically sensitive
mountain range, Pisa Range, Central Otago, New Zealand, J. Hydrol., 50,
383–405, 2011.
Sirguey, P., Boeuf, J., Cambridge, R., and Mills, S.: Evidence of sub-optimal
photogrammetric modelling in RPAS-based aerial surveys, in: Proceedings of
the GeoCart'2016 and ICA Symposium on Cartography, edited by: Moore, A. and
Drecki, I., New Zealand Cartographic Society Inc., 91–98, 2016.
Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the seasonal
snow cover with MODIS at 250 m spatial resolution in the Southern Alps of
New Zealand: Methodology and accuracy assessment, Remote Sens. Environ., 113,
160–181, https://doi.org/10.1016/j.rse.2008.09.008, 2009.
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A
trillion dollar science question, Water. Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017.
Treichler, D. and Kääb, A.: Snow depth from ICESat laser altimetry –
A test study in southern Norway, Remote Sens. Environ., 191, 389–401,
https://doi.org/10.1016/j.rse.2017.01.022, 2017.
Trimble: UAS Master 7.0: Tutorial, Trimble Germany, 2015.
Trimble: Release Notes for UASMaster 8.0.0, Trimble Navigation Limited, 2016.
Vander Jagt, B., Lucieer, A., Wallace, L., Turner, D., and Durand, M.: Snow
depth retrieval with UAS using photogrammetric techniques, Geosciences, 5,
264–285, https://doi.org/10.3390/geosciences5030264, 2015.
Watts, A. C., Ambrosia, V. G., and Hinkley, E. A.: Unmanned aircraft systems
in remote sensing and scientific research: Classification and considerations
of use, Remote Sens., 4, 1671–1692, https://doi.org/10.3390/rs4061671, 2012.
Webster, C. S., Kingston, D. G., and Kerr, T.: Inter-annual variation in the
topographic controls on catchment-scale snow distribution in a maritime
alpine catchment, New Zealand, Hydrol. Process., 29, 1096–1109,
https://doi.org/10.1002/hyp.10224, 2015.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of
Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3,
524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water. Resour. Res., 50, 293–305,
https://doi.org/10.1002/2012WR013038, 2014.
Winstral, A., Marks, D., and Gurney, R.: Simulating wind-affected snow
accumulations at catchment to basin scales, Adv. Water Resour., 55, 64–79,
https://doi.org/10.1016/j.advwatres.2012.08.011, 2013.
Short summary
A remotely piloted aircraft system (RPAS) is evaluated for mapping seasonal snow depth across an alpine basin. RPAS photogrammetry performs well at providing maps of snow depth at high spatial resolution, outperforming field measurements for resolving spatial variability. Uncertainty and error analysis reveal limitations and potential pitfalls of photogrammetric surface-change analysis. Ultimately, RPAS can be a useful tool for understanding snow processes and improving snow modelling efforts.
A remotely piloted aircraft system (RPAS) is evaluated for mapping seasonal snow depth across an...