Articles | Volume 11, issue 5
https://doi.org/10.5194/tc-11-2075-2017
https://doi.org/10.5194/tc-11-2075-2017
Research article
 | 
05 Sep 2017
Research article |  | 05 Sep 2017

Wind enhances differential air advection in surface snow at sub-meter scales

Stephen A. Drake, John S. Selker, and Chad W. Higgins

Related authors

A low-cost acoustic permeameter
Stephen A. Drake, John S. Selker, and Chad W. Higgins
Geosci. Instrum. Method. Data Syst., 6, 199–207, https://doi.org/10.5194/gi-6-199-2017,https://doi.org/10.5194/gi-6-199-2017, 2017
Short summary

Related subject area

Atmospheric Interactions
Seasonal snow–atmosphere modeling: let's do it
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024,https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
The Cryosphere, 18, 4053–4064, https://doi.org/10.5194/tc-18-4053-2024,https://doi.org/10.5194/tc-18-4053-2024, 2024
Short summary
Dynamic and thermodynamic processes related to sea-ice surface melt advance in the Laptev Sea and East Siberian Sea
Hongjie Liang and Wen Zhou
The Cryosphere, 18, 3559–3569, https://doi.org/10.5194/tc-18-3559-2024,https://doi.org/10.5194/tc-18-3559-2024, 2024
Short summary
Understanding the drivers of near-surface winds in Adélie Land, East Antarctica
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024,https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Identifying airborne snow metamorphism with stable water isotopes
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2024-745,https://doi.org/10.5194/egusphere-2024-745, 2024
Short summary

Cited articles

Albert, D. G.: Acoustic waveform inversion with application to seasonal snow covers, J. Acoust. Soc. Am., 109, 91–101, https://doi.org/10.1121/1.1328793, 2001.
Albert, M. R.: Modeling heat, mass, and species transport in polar firn, Ann. Glaciol., 23, 138–143, https://doi.org/10.1017/S0260305500013355, 1996.
Albert, M. R.: Effects of snow and firn ventilation on sublimation rates, Ann. Glaciol., 35, 52–56, https://doi.org/10.3189/172756402781817194, 2002.
Albert, M. R. and Hardy, J. P.: Ventilation experiments in a seasonal snow cover, in: Biogeochemistry of Seasonally Snow-Covered Catchments, edited by: Tonnessen, K. A., Williams, M. A., and Tranter, M., Int. Assoc. of Hydrol. Sci. Press, Inst. of Hydrol., Wallingford, UK, 228, 41–49, 1995.
Albert, M. R. and Shultz, E. F.: Snow and firn properties and air-snow transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, https://doi.org/10.1016/S1352-2310(02)00119-X, 2002.
Download
Short summary
Reaction rates of radiatively and chemically active trace species are influenced by the mobility of air contained within the snowpack. By measuring wind speed and the evolution of a tracer gas with in situ sensors over a 1 m horizontal grid, we found that inhomogeneities in a single snow layer enhanced air movement unevenly as wind speed increased. This result suggests small-scale variability in reaction rates that increases with wind speed and variability in snow permeability.