Articles | Volume 10, issue 3
https://doi.org/10.5194/tc-10-995-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-995-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Multi-method observation and analysis of a tsunami caused by glacier calving
Institute of Geography, University of Zurich, 8057 Zurich, Switzerland
Andreas Vieli
Institute of Geography, University of Zurich, 8057 Zurich, Switzerland
Related authors
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020, https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
Short summary
Glacier calving plays a key role in the dynamic mass loss of ocean-terminating glaciers in Greenland. Source areas and volumes of 900 individual calving events were analysed for size and timing related to environmental forcings. We found that calving volume distribution and style vary along the calving front and are controlled by the water depth and front geometry. We suggest that in deep water both oceanic melt and subaquatic calving contribute substantially to the frontal mass loss.
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020, https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary
Short summary
We report the first-ever in situ measurements of ice flow motion using a remotely controlled drone. We used a quadcopter to land on a highly crevassed area of Eqip Sermia Glacier, Greenland. The drone measured 70 cm of ice displacement over more than 4 h thanks to an accurate onboard GPS. Our study demonstrates that drones have great potential for geoscientists, especially to deploy sensors in hostile environments such as glaciers.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 12, 721–739, https://doi.org/10.5194/tc-12-721-2018, https://doi.org/10.5194/tc-12-721-2018, 2018
Short summary
Short summary
This study investigates the effect of geometrical properties on the stress state and flow regime in the vicinity of the calving front of grounded tidewater glaciers. Our analysis shows that the stress state for simple geometries can be determined solely by the water depth relative to ice thickness. This scaled relationship allows for a simple parametrization to predict calving rates of grounded tidewater glaciers that is simple, physics-based and in good agreement with observations.
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016, https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.
M. P. Lüthi, C. Ryser, L. C. Andrews, G. A. Catania, M. Funk, R. L. Hawley, M. J. Hoffman, and T. A. Neumann
The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, https://doi.org/10.5194/tc-9-245-2015, 2015
Short summary
Short summary
We analyze the thermal structure of the Greenland Ice Sheet with a heat flow model. New borehole measurements indicate that more heat is stored within the ice than would be expected from heat diffusion alone. We conclude that temperate paleo-firn and cyro-hydrologic warming are essential processes that explain the measurements.
M. P. Lüthi
The Cryosphere, 8, 639–650, https://doi.org/10.5194/tc-8-639-2014, https://doi.org/10.5194/tc-8-639-2014, 2014
B. F. Morriss, R. L. Hawley, J. W. Chipman, L. C. Andrews, G. A. Catania, M. J. Hoffman, M. P. Lüthi, and T. A. Neumann
The Cryosphere, 7, 1869–1877, https://doi.org/10.5194/tc-7-1869-2013, https://doi.org/10.5194/tc-7-1869-2013, 2013
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020, https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
Short summary
Glacier calving plays a key role in the dynamic mass loss of ocean-terminating glaciers in Greenland. Source areas and volumes of 900 individual calving events were analysed for size and timing related to environmental forcings. We found that calving volume distribution and style vary along the calving front and are controlled by the water depth and front geometry. We suggest that in deep water both oceanic melt and subaquatic calving contribute substantially to the frontal mass loss.
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020, https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary
Short summary
We report the first-ever in situ measurements of ice flow motion using a remotely controlled drone. We used a quadcopter to land on a highly crevassed area of Eqip Sermia Glacier, Greenland. The drone measured 70 cm of ice displacement over more than 4 h thanks to an accurate onboard GPS. Our study demonstrates that drones have great potential for geoscientists, especially to deploy sensors in hostile environments such as glaciers.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Alessandro Cicoira, Jan Beutel, Jérome Faillettaz, Isabelle Gärtner-Roer, and Andreas Vieli
The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, https://doi.org/10.5194/tc-13-927-2019, 2019
Short summary
Short summary
Rock glacier flow varies on multiple timescales. The variations have been linked to climatic forcing, but a quantitative understanding is still missing.
We use a 1-D numerical modelling approach coupling heat conduction to a creep model in order to study the influence of temperature variations on rock glacier flow. Our results show that heat conduction alone cannot explain the observed variations. Other processes, likely linked to water, must dominate the short-term velocity signal.
Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 12, 721–739, https://doi.org/10.5194/tc-12-721-2018, https://doi.org/10.5194/tc-12-721-2018, 2018
Short summary
Short summary
This study investigates the effect of geometrical properties on the stress state and flow regime in the vicinity of the calving front of grounded tidewater glaciers. Our analysis shows that the stress state for simple geometries can be determined solely by the water depth relative to ice thickness. This scaled relationship allows for a simple parametrization to predict calving rates of grounded tidewater glaciers that is simple, physics-based and in good agreement with observations.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Johann Müller, Andreas Vieli, and Isabelle Gärtner-Roer
The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, https://doi.org/10.5194/tc-10-2865-2016, 2016
Short summary
Short summary
Rock glaciers are landforms indicative of permafrost creep and received considerable attention concerning their dynamical and thermal changes. We use a holistic approach to analyze and model the current and long-term dynamical development of two rock glaciers in the Swiss Alps. The modeling results show the impact of variations in temperature and sediment–ice supply on rock glacier evolution and describe proceeding signs of degradation due to climate warming.
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016, https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, https://doi.org/10.5194/esurf-4-103-2016, 2016
F. Frank, B. W. McArdell, C. Huggel, and A. Vieli
Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, https://doi.org/10.5194/nhess-15-2569-2015, 2015
Short summary
Short summary
The sudden onset of large and erosive debris flows has been observed recently in different catchments in Switzerland, implicating the importance of erosion for debris flow modelling. Therefore, an erosion model was established based on field data (relationship between maximum shear stress and erosion depth and rate) of several debris flows measured at the Illgraben. Erosion model tests at the Spreitgraben showed considerable improvements in runout pattern as well as hydrograph propagation.
M. P. Lüthi, C. Ryser, L. C. Andrews, G. A. Catania, M. Funk, R. L. Hawley, M. J. Hoffman, and T. A. Neumann
The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, https://doi.org/10.5194/tc-9-245-2015, 2015
Short summary
Short summary
We analyze the thermal structure of the Greenland Ice Sheet with a heat flow model. New borehole measurements indicate that more heat is stored within the ice than would be expected from heat diffusion alone. We conclude that temperate paleo-firn and cyro-hydrologic warming are essential processes that explain the measurements.
M. P. Lüthi
The Cryosphere, 8, 639–650, https://doi.org/10.5194/tc-8-639-2014, https://doi.org/10.5194/tc-8-639-2014, 2014
B. F. Morriss, R. L. Hawley, J. W. Chipman, L. C. Andrews, G. A. Catania, M. J. Hoffman, M. P. Lüthi, and T. A. Neumann
The Cryosphere, 7, 1869–1877, https://doi.org/10.5194/tc-7-1869-2013, https://doi.org/10.5194/tc-7-1869-2013, 2013
E. M. Enderlin, I. M. Howat, and A. Vieli
The Cryosphere, 7, 1579–1590, https://doi.org/10.5194/tc-7-1579-2013, https://doi.org/10.5194/tc-7-1579-2013, 2013
E. M. Enderlin, I. M. Howat, and A. Vieli
The Cryosphere, 7, 1007–1015, https://doi.org/10.5194/tc-7-1007-2013, https://doi.org/10.5194/tc-7-1007-2013, 2013
Related subject area
Ocean Interactions
Two-dimensional numerical simulations of mixing under ice keels
Seasonal and diurnal variability of sub-ice platelet layer thickness in McMurdo Sound from electromagnetic induction sounding
Ice-shelf freshwater triggers for the Filchner–Ronne Ice Shelf melt tipping point in a global ocean–sea-ice model
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
Fjord circulation induced by melting icebergs
Ice mélange melt drives changes in observed water column stratification at a tidewater glacier in Greenland
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
A method for constructing directional surface wave spectra from ICESat-2 altimetry
Modeling seasonal-to-decadal ocean–cryosphere interactions along the Sabrina Coast, East Antarctica
A model for the Arctic mixed layer circulation under a summertime lead: implications for the near-surface temperature maximum formation
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Underestimation of oceanic carbon uptake in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump
Can rifts alter ocean dynamics beneath ice shelves?
Uncertainty analysis of single- and multiple-size-class frazil ice models
Impact of icebergs on the seasonal submarine melt of Sermeq Kujalleq
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind
Impact of freshwater runoff from the southwest Greenland Ice Sheet on fjord productivity since the late 19th century
The impact of tides on Antarctic ice shelf melting
Layered seawater intrusion and melt under grounded ice
The Antarctic Coastal Current in the Bellingshausen Sea
Modeling intensive ocean–cryosphere interactions in Lützow-Holm Bay, East Antarctica
Wave–sea-ice interactions in a brittle rheological framework
Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up
High-resolution simulations of interactions between surface ocean dynamics and frazil ice
Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica
Drivers for Atlantic-origin waters abutting Greenland
Impact of West Antarctic ice shelf melting on Southern Ocean hydrography
Surface emergence of glacial plumes determined by fjord stratification
Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
Ice island thinning: rates and model calibration with in situ observations from Baffin Bay, Nunavut
Quantifying iceberg calving fluxes with underwater noise
Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution
Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone
Exploring mechanisms responsible for tidal modulation in flow of the Filchner–Ronne Ice Shelf
Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study
Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers
Spatiotemporal distributions of icebergs in a temperate fjord: Columbia Fjord, Alaska
Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model
Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model
Large spatial variations in the flux balance along the front of a Greenland tidewater glacier
Responses of sub-ice platelet layer thickening rate and frazil-ice concentration to variations in ice-shelf water supercooling in McMurdo Sound, Antarctica
Modeling the effect of Ross Ice Shelf melting on the Southern Ocean in quasi-equilibrium
Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing
Antarctic sub-shelf melt rates via PICO
Grounding line migration through the calving season at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry
Greenland iceberg melt variability from high-resolution satellite observations
Simple models for the simulation of submarine melt for a Greenland glacial system model
Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes
Sam De Abreu, Rosalie M. Cormier, Mikhail G. Schee, Varvara E. Zemskova, Erica Rosenblum, and Nicolas Grisouard
The Cryosphere, 18, 3159–3176, https://doi.org/10.5194/tc-18-3159-2024, https://doi.org/10.5194/tc-18-3159-2024, 2024
Short summary
Short summary
Arctic sea ice is becoming more mobile and thinner, which will affect the upper Arctic Ocean in unforeseen ways. Using numerical simulations, we find that mixing by ice keels (ridges underlying sea ice) depends significantly on their speeds and depths and the density structure of the upper ocean. Large uncertainties in our results highlight the need for more realistic numerical simulations and better measurements of ice keel characteristics.
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024, https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
Short summary
Glacial meltwater with ice crystals flows from beneath ice shelves, causing thicker sea ice with sub-ice platelet layers (SIPLs) beneath. Thicker sea ice and SIPL reveal where and how much meltwater is outflowing. We collected continuous measurements of sea ice and SIPL. In winter, we observed rapid SIPL growth with strong winds. In spring, SIPLs grew when tides caused offshore circulation. Wind-driven and tidal circulation influence glacial meltwater outflow from ice shelf cavities.
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024, https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Short summary
The Filchner–Ronne Ice Shelf in Antarctica is susceptible to the intrusion of deep, warm ocean water that could increase the melting at the ice-shelf base by a factor of 10. We show that representing this potential melt regime switch in a low-resolution climate model requires careful treatment of iceberg melting and ocean mixing. We also demonstrate a possible ice-shelf melt domino effect where increased melting of nearby ice shelves can lead to the melt regime switch at Filchner–Ronne.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper-ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal timescales, and this link has strengthened since the 2000s.
Kenneth G. Hughes
The Cryosphere, 18, 1315–1332, https://doi.org/10.5194/tc-18-1315-2024, https://doi.org/10.5194/tc-18-1315-2024, 2024
Short summary
Short summary
A mathematical and conceptual model of how the melting of hundreds of icebergs generates currents within a fjord.
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-504, https://doi.org/10.5194/egusphere-2024-504, 2024
Short summary
Short summary
The melting of ice mélange, or dense packs of icebergs and sea ice in glacial fjords, can influence the water column by releasing cold, fresh water deep under the ocean surface. However, direct observations of this process have remained elusive. We use measurements of ocean temperature, salinity, and velocity bookending an episodic ice mélange event to show that this meltwater input changes the density profile of a glacial fjord and has implications for understanding tidewater glacier change.
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024, https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Short summary
Warming ocean temperatures cause considerable ice loss from the Greenland Ice Sheet; however climate models are unable to resolve the complex ocean processes within fjords that influence near-glacier ocean temperatures. Here, we use a computer model to test the accuracy of assumptions that allow climate and ice sheet models to project near-glacier ocean temperatures, and thus glacier melt, into the future. We then develop new methods that improve accuracy by accounting for local ocean processes.
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024, https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
Short summary
Sea ice is heavily impacted by waves on its margins, and we currently do not have routine observations of waves in sea ice. Here we propose two methods to separate the surface waves from the sea-ice height observations along each ICESat-2 track using machine learning. Both methods together allow us to follow changes in the wave height through the sea ice.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024, https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Short summary
This study focuses on the Totten and Moscow University ice shelves, East Antarctica. We used an ocean–sea ice–ice shelf model to better understand regional interactions between ocean, sea ice, and ice shelf. We found that a combination of warm ocean water and local sea ice production influences the regional ice shelf basal melting. Furthermore, the model reproduced the summertime undercurrent on the upper continental slope, regulating ocean heat transport onto the continental shelf.
Alberto Alvarez
The Cryosphere, 17, 3343–3361, https://doi.org/10.5194/tc-17-3343-2023, https://doi.org/10.5194/tc-17-3343-2023, 2023
Short summary
Short summary
A near-surface temperature maximum (NSTM) layer is typically observed under different Arctic basins. Although its development seems to be related to solar heating in leads, its formation mechanism is under debate. This study uses numerical modeling in an idealized framework to demonstrate that the NSTM layer forms under a summer lead exposed to a combination of calm and moderate wind periods. Future warming of this layer could modify acoustic propagation with implications for marine mammals.
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023, https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Fabien Souillé, Cédric Goeury, and Rem-Sophia Mouradi
The Cryosphere, 17, 1645–1674, https://doi.org/10.5194/tc-17-1645-2023, https://doi.org/10.5194/tc-17-1645-2023, 2023
Short summary
Short summary
Models that can predict temperature and ice crystal formation (frazil) in water are important for river and coastal engineering. Indeed, frazil has direct impact on submerged structures and often precedes the formation of ice cover. In this paper, an uncertainty analysis of two mathematical models that simulate supercooling and frazil is carried out within a probabilistic framework. The presented methodology offers new insight into the models and their parameterization.
Karita Kajanto, Fiammetta Straneo, and Kerim Nisancioglu
The Cryosphere, 17, 371–390, https://doi.org/10.5194/tc-17-371-2023, https://doi.org/10.5194/tc-17-371-2023, 2023
Short summary
Short summary
Many outlet glaciers in Greenland are connected to the ocean by narrow glacial fjords, where warm water melts the glacier from underneath. Ocean water is modified in these fjords through processes that are poorly understood, particularly iceberg melt. We use a model to show how iceberg melt cools down Ilulissat Icefjord and causes circulation to take place deeper in the fjord than if there were no icebergs. This causes the glacier to melt less and from a smaller area than without icebergs.
Ji Sung Na, Taekyun Kim, Emilia Kyung Jin, Seung-Tae Yoon, Won Sang Lee, Sukyoung Yun, and Jiyeon Lee
The Cryosphere, 16, 3451–3468, https://doi.org/10.5194/tc-16-3451-2022, https://doi.org/10.5194/tc-16-3451-2022, 2022
Short summary
Short summary
Beneath the Antarctic ice shelf, sub-ice-shelf plume flow that can cause turbulent mixing exists. In this study, we investigate how this flow affects ocean dynamics and ice melting near the ice front. Our results obtained by validated simulation show that higher turbulence intensity results in vigorous ice melting due to the high heat entrainment. Moreover, this flow with meltwater created by this flow highly affects the ocean overturning circulations near the ice front.
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Alexander A. Robel, Earle Wilson, and Helene Seroussi
The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, https://doi.org/10.5194/tc-16-451-2022, 2022
Short summary
Short summary
Warm seawater may intrude as a thin layer below glaciers in contact with the ocean. Mathematical theory predicts that this intrusion may extend over distances of kilometers under realistic conditions. Computer models demonstrate that if this warm seawater causes melting of a glacier bottom, it can cause rates of glacier ice loss and sea level rise to be up to 2 times faster in response to potential future ocean warming.
Ryan Schubert, Andrew F. Thompson, Kevin Speer, Lena Schulze Chretien, and Yana Bebieva
The Cryosphere, 15, 4179–4199, https://doi.org/10.5194/tc-15-4179-2021, https://doi.org/10.5194/tc-15-4179-2021, 2021
Short summary
Short summary
The Antarctic Coastal Current (AACC) is an ocean current found along the coast of Antarctica. Using measurements of temperature and salinity collected by instrumented seals, the AACC is shown to be a continuous circulation feature throughout West Antarctica. Due to its proximity to the coast, the AACC's structure influences oceanic melting of West Antarctic ice shelves. These melt rates impact the stability of the West Antarctic Ice Sheet with global implications for future sea level change.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, and Takeshi Tamura
The Cryosphere, 15, 1697–1717, https://doi.org/10.5194/tc-15-1697-2021, https://doi.org/10.5194/tc-15-1697-2021, 2021
Short summary
Short summary
We used an ocean–sea ice–ice shelf model with a 2–3 km horizontal resolution to investigate ocean–ice shelf/glacier interactions in Lützow-Holm Bay, East Antarctica. The numerical model reproduced the observed warm water intrusion along the deep trough in the bay. We examined in detail (1) water mass changes between the upper continental slope and shelf regions and (2) the fast-ice role in the ocean conditions and basal melting at the Shirase Glacier tongue.
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Short summary
In this study, we investigate the interactions of surface ocean waves with sea ice. We focus on the evolution of sea ice after it has been fragmented by the waves. Fragmented sea ice is expected to experience less resistance to deformation. We reproduce this evolution using a new coupling framework between a wave model and the recently developed sea ice model neXtSIM. We find that waves can significantly increase the mobility of compact sea ice over wide areas in the wake of storm events.
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020, https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Short summary
In this work we demonstrate the existence of an observational threshold which identifies when waves are most likely to break sea ice. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. We show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for operational forecasting models.
Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz
The Cryosphere, 14, 3707–3729, https://doi.org/10.5194/tc-14-3707-2020, https://doi.org/10.5194/tc-14-3707-2020, 2020
Short summary
Short summary
Under typical conditions favorable for sea ice formation in many regions (strong wind and waves, low air temperature), ice forms not at the sea surface but within the upper, turbulent layer of the ocean. Although interactions between ice and ocean dynamics are very important for the evolution of sea ice cover, many aspects of them are poorly understood. We use a numerical model to analyze three-dimensional water circulation and ice transport and show that ice strongly modifies that circulation.
Lisa Thompson, Madison Smith, Jim Thomson, Sharon Stammerjohn, Steve Ackley, and Brice Loose
The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020, https://doi.org/10.5194/tc-14-3329-2020, 2020
Short summary
Short summary
The offshore winds around Antarctica can reach hurricane strength and produce intense cooling, causing the surface ocean to form a slurry of seawater and ice crystals. For the first time, we observed a buildup of heat and salt in the surface ocean, caused by loose ice crystal formation. We conclude that up to 1 m of ice was formed per day by the intense cooling, suggesting that unconsolidated crystals may be an important part of the total freezing that happens around Antarctica.
Laura C. Gillard, Xianmin Hu, Paul G. Myers, Mads Hvid Ribergaard, and Craig M. Lee
The Cryosphere, 14, 2729–2753, https://doi.org/10.5194/tc-14-2729-2020, https://doi.org/10.5194/tc-14-2729-2020, 2020
Short summary
Short summary
Greenland's glaciers in contact with the ocean drain the majority of the ice sheet (GrIS). Deep troughs along the shelf branch into fjords, connecting glaciers with ocean waters. The heat from the ocean entering deep troughs may then accelerate the mass loss. Onshore heat transport through troughs was investigated with an ocean model. Processes that drive the delivery of ocean heat respond differently by region to increasing GrIS meltwater, mean circulation, and filtering out of storms.
Yoshihiro Nakayama, Ralph Timmermann, and Hartmut H. Hellmer
The Cryosphere, 14, 2205–2216, https://doi.org/10.5194/tc-14-2205-2020, https://doi.org/10.5194/tc-14-2205-2020, 2020
Short summary
Short summary
Previous studies have shown accelerations of West Antarctic glaciers, implying that basal melt rates of these glaciers were small and increased in the middle of the 20th century. We conduct coupled sea ice–ice shelf–ocean simulations with different levels of ice shelf melting from West Antarctic glaciers. This study reveals how far and how quickly glacial meltwater from ice shelves in the Amundsen and Bellingshausen seas propagates downstream into the Ross Sea and along the East Antarctic coast.
Eva De Andrés, Donald A. Slater, Fiamma Straneo, Jaime Otero, Sarah Das, and Francisco Navarro
The Cryosphere, 14, 1951–1969, https://doi.org/10.5194/tc-14-1951-2020, https://doi.org/10.5194/tc-14-1951-2020, 2020
Short summary
Short summary
Buoyant plumes at tidewater glaciers result from localized subglacial discharges of surface melt. They promote glacier submarine melting and influence the delivery of nutrients to the fjord's surface waters. Combining plume theory with observations, we have found that increased fjord stratification, which is due to larger meltwater content, prevents the vertical growth of the plume and buffers submarine melting. We discuss the implications for nutrient fluxes, CO2 trapping and water export.
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Short summary
Here we compare and contrast results from five well-studied Arctic field sites in order to understand how glaciers affect marine biogeochemistry and marine primary production. The key questions are listed as follows. Where and when does glacial freshwater discharge promote or reduce marine primary production? How does spatio-temporal variability in glacial discharge affect marine primary production? And how far-reaching are the effects of glacial discharge on marine biogeochemistry?
Anna J. Crawford, Derek Mueller, Gregory Crocker, Laurent Mingo, Luc Desjardins, Dany Dumont, and Marcel Babin
The Cryosphere, 14, 1067–1081, https://doi.org/10.5194/tc-14-1067-2020, https://doi.org/10.5194/tc-14-1067-2020, 2020
Short summary
Short summary
Large tabular icebergs (
ice islands) are symbols of climate change as well as marine hazards. We measured thickness along radar transects over two visits to a 14 km2 Arctic ice island and left automated equipment to monitor surface ablation and thickness over 1 year. We assess variation in thinning rates and calibrate an ice–ocean melt model with field data. Our work contributes to understanding ice island deterioration via logistically complex fieldwork in a remote environment.
Oskar Glowacki and Grant B. Deane
The Cryosphere, 14, 1025–1042, https://doi.org/10.5194/tc-14-1025-2020, https://doi.org/10.5194/tc-14-1025-2020, 2020
Short summary
Short summary
Marine-terminating glaciers are shrinking rapidly in response to the warming climate and thus provide large quantities of fresh water to the ocean system. However, accurate estimates of ice loss at the ice–ocean boundary are difficult to obtain. Here we demonstrate that ice mass loss from iceberg break-off (calving) can be measured by analyzing the underwater noise generated as icebergs impact the sea surface.
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary
Short summary
Changes in the ocean around Greenland play an important role in determining how much the ice sheet will contribute to global sea level over the coming century. However, capturing these links in models is very challenging. This paper presents a strategy enabling an ensemble of ice sheet models to feel the effect of the ocean for the first time and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.
Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin
The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, https://doi.org/10.5194/tc-14-709-2020, 2020
Short summary
Short summary
We investigate the interactions of surface ocean waves with sea ice taking place at the interface between the compact sea ice cover and the open ocean. We use a newly developed coupling framework between a wave and an ocean–sea ice numerical model. Our results show how the push on sea ice exerted by waves changes the amount and the location of sea ice melting, with a strong impact on the ocean surface properties close to the ice edge.
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 14, 17–37, https://doi.org/10.5194/tc-14-17-2020, https://doi.org/10.5194/tc-14-17-2020, 2020
Short summary
Short summary
The flow of ice shelves is now known to be strongly affected by ocean tides, but the mechanism by which this happens is unclear. We use a viscoelastic model to try to reproduce observations of this behaviour on the Filchner–Ronne Ice Shelf in Antarctica. We find that tilting of the ice shelf explains the short-period behaviour, while tidally induced movement of the grounding line (the boundary between grounded and floating ice) explains the more complex long-period response.
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2901–2914, https://doi.org/10.5194/tc-13-2901-2019, https://doi.org/10.5194/tc-13-2901-2019, 2019
Short summary
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. One of the reasons limiting progress in modelling is a lack of observational data for model validation. The paper presents an analysis of laboratory observations of waves propagating in colliding ice floes. We show that wave attenuation is sensitive to floe size and wave period. A numerical model is calibrated to reproduce this behaviour.
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019, https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Short summary
We used a number of computer simulations to understand the recent retreat of a rapidly changing group of glaciers in West Antarctica. We found that significant melt underneath the floating extensions of the glaciers, driven by relatively warm ocean water at depth, was likely needed to cause the large retreat that has been observed. If melt continues around current rates, retreat is likely to continue through the coming century and extend beyond the present-day drainage area of these glaciers.
Sarah U. Neuhaus, Slawek M. Tulaczyk, and Carolyn Branecky Begeman
The Cryosphere, 13, 1785–1799, https://doi.org/10.5194/tc-13-1785-2019, https://doi.org/10.5194/tc-13-1785-2019, 2019
Short summary
Short summary
Relatively few studies have been carried out on icebergs inside fjords, despite the fact that the majority of recent sea level rise has resulted from glaciers terminating in fjords. We examine the size and spatial distribution of icebergs in Columbia Fjord, Alaska, over a period of 8 months to determine their influence on fjord dynamics.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Tyler Pelle, Mathieu Morlighem, and Johannes H. Bondzio
The Cryosphere, 13, 1043–1049, https://doi.org/10.5194/tc-13-1043-2019, https://doi.org/10.5194/tc-13-1043-2019, 2019
Short summary
Short summary
How ocean-induced melt under floating ice shelves will change as ocean currents evolve remains a big uncertainty in projections of sea level rise. In this study, we combine two of the most recently developed melt models to form PICOP, which overcomes the limitations of past models and produces accurate ice shelf melt rates. We find that our model is easy to set up and computationally efficient, providing researchers an important tool to improve the accuracy of their future glacial projections.
Till J. W. Wagner, Fiamma Straneo, Clark G. Richards, Donald A. Slater, Laura A. Stevens, Sarah B. Das, and Hanumant Singh
The Cryosphere, 13, 911–925, https://doi.org/10.5194/tc-13-911-2019, https://doi.org/10.5194/tc-13-911-2019, 2019
Short summary
Short summary
This study shows how complex and varied the processes are that determine the frontal position of tidewater glaciers. Rather than uniform melt or calving rates, a single (medium-sized) glacier can feature regions that retreat almost exclusively due to melting and other regions that retreat only due to calving. This has far-reaching consequences for our understanding of how glaciers retreat or advance.
Chen Cheng, Adrian Jenkins, Paul R. Holland, Zhaomin Wang, Chengyan Liu, and Ruibin Xia
The Cryosphere, 13, 265–280, https://doi.org/10.5194/tc-13-265-2019, https://doi.org/10.5194/tc-13-265-2019, 2019
Short summary
Short summary
The sub-ice platelet layer (SIPL) under fast ice is most prevalent in McMurdo Sound, Antarctica. Using a modified plume model, we investigated the responses of SIPL thickening rate and frazil concentration to variations in ice shelf water supercooling in McMurdo Sound. It would be key to parameterizing the relevant process in more complex three-dimensional, primitive equation ocean models, which relies on the knowledge of the suspended frazil size spectrum within the ice–ocean boundary layer.
Xiying Liu
The Cryosphere, 12, 3033–3044, https://doi.org/10.5194/tc-12-3033-2018, https://doi.org/10.5194/tc-12-3033-2018, 2018
Short summary
Short summary
Numerical experiments have been performed to study the effect of basal melting of the Ross Ice Shelf on the ocean southward of 35° S. It is shown that the melt rate averaged over the entire Ross Ice Shelf is 0.253 m year-1, which is associated with a freshwater flux of 3150 m3 s-1. The extra freshwater flux decreases the salinity in the Southern Ocean substantially, leading to anomalies in circulation, sea ice, and heat transport in certain parts of the ocean.
Chad A. Greene, Duncan A. Young, David E. Gwyther, Benjamin K. Galton-Fenzi, and Donald D. Blankenship
The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, https://doi.org/10.5194/tc-12-2869-2018, 2018
Short summary
Short summary
We show that Totten Ice Shelf accelerates each spring in response to the breakup of seasonal landfast sea ice at the ice shelf calving front. The previously unreported seasonal flow variability may have aliased measurements in at least one previous study of Totten's response to ocean forcing on interannual timescales. The role of sea ice in buttressing the flow of the ice shelf implies that long-term changes in sea ice cover could have impacts on the mass balance of the East Antarctic Ice Sheet.
Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann
The Cryosphere, 12, 1969–1985, https://doi.org/10.5194/tc-12-1969-2018, https://doi.org/10.5194/tc-12-1969-2018, 2018
Short summary
Short summary
Floating ice shelves surround most of Antarctica and ocean-driven melting at their bases is a major reason for its current sea-level contribution. We developed a simple model based on a box model approach that captures the vertical ocean circulation generally present in ice-shelf cavities and allows simulating melt rates in accordance with physical processes beneath the ice. We test the model for all Antarctic ice shelves and find that melt rates and melt patterns agree well with observations.
Surui Xie, Timothy H. Dixon, Denis Voytenko, Fanghui Deng, and David M. Holland
The Cryosphere, 12, 1387–1400, https://doi.org/10.5194/tc-12-1387-2018, https://doi.org/10.5194/tc-12-1387-2018, 2018
Short summary
Short summary
Time-varying velocity and topography of the terminus of Jakobshavn Isbræ were observed with a terrestrial radar interferometer in three summer campaigns (2012, 2015, 2016). Surface elevation and tidal responses of ice speed suggest a narrow floating zone in early summer, while in late summer the entire glacier is likely grounded. We hypothesize that Jakobshavn Isbræ advances a few km in winter to form a floating zone but loses this floating portion in the subsequent summer through calving.
Ellyn M. Enderlin, Caroline J. Carrigan, William H. Kochtitzky, Alexandra Cuadros, Twila Moon, and Gordon S. Hamilton
The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, https://doi.org/10.5194/tc-12-565-2018, 2018
Short summary
Short summary
This paper aims to improve the understanding of variations in ocean conditions around the Greenland Ice Sheet, which have been called upon to explain recent glacier change. Changes in iceberg elevation over time, measured using satellite data, are used to estimate average melt rates. We find that iceberg melt rates generally decrease with latitude and increase with keel depth and can be used to characterize ocean conditions at Greenland's inaccessible marine margins.
Johanna Beckmann, Mahé Perrette, and Andrey Ganopolski
The Cryosphere, 12, 301–323, https://doi.org/10.5194/tc-12-301-2018, https://doi.org/10.5194/tc-12-301-2018, 2018
Short summary
Short summary
Greenland's glaciers that are in contact with the ocean undergo a special ice–ocean melting. To project numerically Greenland's centennial contribution to sea level rise, it is crucial to incorporate this special melting. We demonstrate that a numerically cheap model shows the qualitative same behavior as numerical expensive 2–3-dimensional models and calculates the same melting as empirical data show. Our analytical solution gives some insight in the yet poorly understood melting behavior.
Werner M. J. Lazeroms, Adrian Jenkins, G. Hilmar Gudmundsson, and Roderik S. W. van de Wal
The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, https://doi.org/10.5194/tc-12-49-2018, 2018
Short summary
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Cited articles
Amundson, J. M., Truffer, M., Lüthi, M. P., Fahnestock, M., Motyka, R. J., and West, M.: Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland, Geophys. Res. Lett., 35, L22501, https://doi.org/10.1029/2008GL035281, 2008.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M., and Motyka, R.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Amundson, J. M., Clinton, J. F., Fahnestock, M., Truffer, M., Lüthi, M. P., and Motyka, R. J.: Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland, Ann. Glaciol., 60, 79–84, https://doi.org/10.3189/2012/AoG60A200, 2012.
Bauer, A.: Glaciologie Groenland II. Le glacier de l'Eqe. 6, Tech. rep., Expéditions Polaires Francaises, Hermann, Paris, 118 pp., 1955.
Bauer, A.: Le glacier de l'Eqe (Eqip Sermia). Mouvement et variations du front (1959), Tech. Rep. 2, Expédition glaciologique internationale au Groenland (EGIG), Meddelelser om Grønland, Reitzel, København, 1968.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007.
Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A.: A review of terrestrial radar interferometry for measuring surface change in the geosciences, Earth Surf. Proc. Land., 40, 208–228, https://doi.org/10.1002/esp.3656, 2014.
Ekström, G., Nettles, M., and Abers, G.: Glacial Earthquakes, Science, 302, 622–624, https://doi.org/10.1126/science.1088057, 2003.
Ekström, G., Nettles, M., and Tsai, V. C.: Seasonality and increasing frequency of Greenland glacial earthquakes, Science, 311, 1756–1758, https://doi.org/10.1126/science.1122112, 2006.
Fritz, H. M., Hager, W. H., and Minor, H.-E.: Landslide generated impulse waves. 1. Instantaneous flow fields, Exp. Fluids, 35, 505–519, https://doi.org/10.1007/s00348-003-0659-0, 2003.
Fritz, H. M., Hager, W. H., and Minor, H.-E.: Near field characteristics of landslide generated impulse waves, J. Waterway Port Coast. Ocean Eng., 130, 287–302, https://doi.org/10.1007/s00348-003-0659-0, 2004.
Gabl, R., Seibl, J., Gems, B., and Aufleger, M.: 3-D-numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir, Nat. Hazards Earth Syst. Sci., 15, 2617–2630, https://doi.org/10.5194/nhess-15-2617-2015, 2015.
Heller, V. and Hager, W. H.: Impulse product parameter in landslide generated impulse waves, J. Waterway Port Coast. Ocean Eng., 136, 145–155, https://doi.org/10.1061/(asce)ww.1943-5460.0000037, 2010.
Heller, V. and Hager, W.: Wave types of landslide generated impulse waves, Ocean Eng., 38, 630–640, https://doi.org/10.1016/j.oceaneng.2010.12.010, 2011.
Heller, V. and Spinneken, J.: On the effect of the water body geometry on landslide–tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation, Coast. Eng., 104, 113–134, https://doi.org/10.1016/j.coastaleng.2015.06.006, 2015.
Heller, V., Hager, W. H., and Minor, H.-E.: Scale effects in subaerial landslide generated impulse waves, Exp. Fluids, 44, 691–703, https://doi.org/10.1007/s00348-007-0427-7, 2008.
Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse waves in reservoirs: Basics and computation, Mitteilungen 211, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Zürich, Switzerland, 172 pp., 2009.
Howat, I., Negrete, A., and Smith, B.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets, The Cryosphere, 8, 1–26, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Levermann, A.: When glacial giants roll over, Nature, 472, 43–44, https://doi.org/10.1038/472043a, 2011.
Lüthi, M. P., Fahnestock, M., and Truffer, M.: Calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbræ, Greenland, J. Glaciol., 55, 563–566, https://doi.org/10.3189/002214309788816650, 2009.
Lüthi, M. P., Vieli, A., Moreau, L., Joughin, I., Reisser, M., Small, D., and Stober, M.: A century of geometry and velocity evolution at Eqip Sermia, West Greenland, J. Glaciol., https://doi.org/10.1017/jog.2016.38, in press, 2016.
MacAyeal, D. R., Abbot, D. S., and Sergienko, O. V.: Iceberg-capsize tsunamigenesis, Ann. Glaciol., 52, 51–56, https://doi.org/10.3189/172756411797252103, 2011.
Moon, T., Joughin, I., Smith, B., and Howat, I.: 21st-century evolution of Greenland outlet glacier velocities, Science, 336, 576–578, https://doi.org/10.1126/science.1219985, 2012.
Nettles, M., Larsen, T. B., Elosegui, P., Hamilton, G. S., Stearns, L. A., Ahlstrøm, A. P., Davis, J. L., Andersen, M. L., de Juan, J., Khan, S. A., Stenseng, L., Ekstrøm, G., and Forsberg, R.: Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland, Geophys. Res. Lett., 35, L24503, https://doi.org/10.1029/2008GL036127, 2008.
Nick, F., Vieli, A., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T., Pattyn, F., and van de Wal, R.: Future sea-level rise from Greenland's main outlet glaciers in a warming climate, Nature, 479, 235–238, https://doi.org/10.1038/nature12068, 2013.
Panizzo, A., Girolamo, P. D., and Petaccia, A.: Forecasting impulse waves generated by subaerial landslides, J. Geophys. Res., 110, C12025, https://doi.org/10.1029/2004JC002778, 2005.
Pastor, M., Herreros, I., Merodo, J. F., Mira, P., Haddad, B., Quecedo, M., González, E., Alvarez-Cedrón, C., and Drempetic, V.: Modelling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes and reservoirs, Eng. Geol., 109, 124–134, https://doi.org/10.1016/j.enggeo.2008.10.006, 2009.
Reeh, N.: Long calving waves, in: Proceedings, 8th International Conference on Port and Ocean Engineering under Arctic Conditions, 7–14 September 1985, Narssarssuaq, 1310–1327, 1985.
Schulson, E. M. and Fortt, A. L.: Friction of ice on ice, J. Geophys. Res., 117, B12204, https://doi.org/10.1029/2012JB009219, 2012.
Strozzi, T., Werner, C., Wiesmann, A., and Wegmüller, U.: Topography Mapping With a Portable Real-Aperture Radar Interferometer, IEEE Geosci. Remote Sens. Lett., 9, 277–281, https://doi.org/10.1109/LGRS.2011.2166751, 2012.
Viroulet, S., Cébron, D., Kimmoun, O., and Kharif, C.: Shallow water waves generated by subaerial solid landslides, Geophys. J. Int., 193, 747–762, https://doi.org/10.1093/gji/ggs133, 2013.
Walder, J. S., Watts, P., Sorensen, O. E., and Janssen, K.: Tsunamis generated by subaerial mass flows, J. Geophys. Res., 108, 2236, https://doi.org/10.1029/2001JB000707, 2003.
Walter, F., Amundson, J., O'Neel, S., Truffer, M., Fahnestock, M., and Fricker, H.: Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland, J. Geophys. Res., 117, F01036, https://doi.org/10.1029/2011JF002132, 2012.
Walter, F., Olivieri, M., and Clinton, J.: Calving event detection by observation of seiche effects on the Greenland fjords, J. Glaciol., 59, 162–178, https://doi.org/10.3189/2013JoG12J118, 2013.
Short summary
Glaciers flowing into the ocean sometimes release huge pieces of ice and
cause violent tsunami waves which, upon landfall, can cause severe
destruction. During an exceptionally well-documented event at Eqip Sermia,
west Greenland, the collapse of a 200 m high ice cliff caused a tsunami wave
of 50 m height, traveling at a speed exceeding 100 km h−1. This tsunami wave
was filmed from a tour boat, and was simultaneously observed with several
instruments, as was the run-up of 15 m on the shore.
Glaciers flowing into the ocean sometimes release huge pieces of ice and
cause violent tsunami...