Articles | Volume 8, issue 2
The Cryosphere, 8, 575–585, 2014
The Cryosphere, 8, 575–585, 2014
Research article
07 Apr 2014
Research article | 07 Apr 2014

Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland Ice Sheet

I. Rogozhina and D. Rau

Related authors

High-resolution modeling of glacier mass balance and surface runoff in western Norway driven by bias-corrected climate forcing
Yongmei Gong and Irina Rogozhina
Hydrol. Earth Syst. Sci. Discuss.,,, 2021
Revised manuscript under review for HESS
Short summary
Nunataks as barriers to ice flow: implications for palaeo ice sheet reconstructions
Martim Mas e Braga, Richard Selwyn Jones, Jennifer C. H. Newall, Irina Rogozhina, Jane L. Andersen, Nathaniel A. Lifton, and Arjen P. Stroeven
The Cryosphere, 15, 4929–4947,,, 2021
Short summary
Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c
Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina
The Cryosphere, 15, 459–478,,, 2021
Short summary
Hypersensitivity of glacial summer temperatures in Siberia
Pepijn Bakker, Irina Rogozhina, Ute Merkel, and Matthias Prange
Clim. Past, 16, 371–386,,, 2020
Short summary
Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet
Jorge Bernales, Irina Rogozhina, Ralf Greve, and Maik Thomas
The Cryosphere, 11, 247–265,,, 2017
Short summary

Related subject area

The impact of climate oscillations on the surface energy budget over the Greenland Ice Sheet in a changing climate
Tiago Silva, Jakob Abermann, Brice Noël, Sonika Shahi, Willem Jan van de Berg, and Wolfgang Schöner
The Cryosphere, 16, 3375–3391,,, 2022
Short summary
GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland Ice Sheet
Joseph A. MacGregor, Winnie Chu, William T. Colgan, Mark A. Fahnestock, Denis Felikson, Nanna B. Karlsson, Sophie M. J. Nowicki, and Michael Studinger
The Cryosphere, 16, 3033–3049,,, 2022
Short summary
Unravelling the long-term, locally heterogenous response of Greenland glaciers observed in archival photography
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470,,, 2022
Short summary
Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372,,, 2022
Short summary
Comparison of ice dynamics using full-Stokes and Blatter–Pattyn approximation: application to the Northeast Greenland Ice Stream
Martin Rückamp, Thomas Kleiner, and Angelika Humbert
The Cryosphere, 16, 1675–1696,,, 2022
Short summary

Cited articles

Bamber, J. L., Layberry, R. L., and Gogineni, S. P.: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 773–33, 2001.
Betts, A. K., Köhler, M., and Zhang, Y.: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations, J. Geophys. Res., 114, 1–12, 2009.
Bougamont, M., Bamber, J. L., and Greuell, W.: A surface mass balance model for the Greenland Ice Sheet, J. Geophys. Res., 110, F04018,, 2005.
Braithwaite, R. J.: Calculation of degree-days for glacier-climate research, Z. Gletscherkd. Glazialgeol., 20, 1–20, 1984.
Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling, J. Glaciol., 41, 153–160, 1995.