Research article
13 Feb 2012
Research article | 13 Feb 2012
Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations
D. van As et al.
Related subject area
Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020,https://doi.org/10.5194/tc-14-147-2020, 2020
Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica
Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke
The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019,https://doi.org/10.5194/tc-13-1473-2019, 2019
Short summary
A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246, https://doi.org/10.5194/tc-13-1233-2019,https://doi.org/10.5194/tc-13-1233-2019, 2019
Short summary
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018,https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary
Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure
Mathias Göckede, Fanny Kittler, Min Jung Kwon, Ina Burjack, Martin Heimann, Olaf Kolle, Nikita Zimov, and Sergey Zimov
The Cryosphere, 11, 2975–2996, https://doi.org/10.5194/tc-11-2975-2017,https://doi.org/10.5194/tc-11-2975-2017, 2017
Short summary
Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada
Valentina Radić, Brian Menounos, Joseph Shea, Noel Fitzpatrick, Mekdes A. Tessema, and Stephen J. Déry
The Cryosphere, 11, 2897–2918, https://doi.org/10.5194/tc-11-2897-2017,https://doi.org/10.5194/tc-11-2897-2017, 2017
Short summary
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo
Joseph M. Cook, Andrew J. Hodson, Alex S. Gardner, Mark Flanner, Andrew J. Tedstone, Christopher Williamson, Tristram D. L. Irvine-Fynn, Johan Nilsson, Robert Bryant, and Martyn Tranter
The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017,https://doi.org/10.5194/tc-11-2611-2017, 2017
Short summary
The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations
Louise Steffensen Schmidt, Guðfinna Aðalgeirsdóttir, Sverrir Guðmundsson, Peter L. Langen, Finnur Pálsson, Ruth Mottram, Simon Gascoin, and Helgi Björnsson
The Cryosphere, 11, 1665–1684, https://doi.org/10.5194/tc-11-1665-2017,https://doi.org/10.5194/tc-11-1665-2017, 2017
Short summary
Surface-layer turbulence, energy balance and links to atmospheric circulations over a mountain glacier in the French Alps
Maxime Litt, Jean-Emmanuel Sicart, Delphine Six, Patrick Wagnon, and Warren D. Helgason
The Cryosphere, 11, 971–987, https://doi.org/10.5194/tc-11-971-2017,https://doi.org/10.5194/tc-11-971-2017, 2017
Short summary
A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland
Wenshan Wang, Charles S. Zender, Dirk van As, Paul C. J. P. Smeets, and Michiel R. van den Broeke
The Cryosphere, 10, 727–741, https://doi.org/10.5194/tc-10-727-2016,https://doi.org/10.5194/tc-10-727-2016, 2016
Short summary
Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163–2181, https://doi.org/10.5194/tc-9-2163-2015,https://doi.org/10.5194/tc-9-2163-2015, 2015
Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements
M. F. Azam, P. Wagnon, C. Vincent, AL. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal
The Cryosphere, 8, 2195–2217, https://doi.org/10.5194/tc-8-2195-2014,https://doi.org/10.5194/tc-8-2195-2014, 2014
Short summary
Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach
E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush
The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014,https://doi.org/10.5194/tc-8-1429-2014, 2014
Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014,https://doi.org/10.5194/tc-8-125-2014, 2014
Modeling energy and mass balance of Shallap Glacier, Peru
W. Gurgiser, B. Marzeion, L. Nicholson, M. Ortner, and G. Kaser
The Cryosphere, 7, 1787–1802, https://doi.org/10.5194/tc-7-1787-2013,https://doi.org/10.5194/tc-7-1787-2013, 2013
Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers
L. I. Nicholson, R. Prinz, T. Mölg, and G. Kaser
The Cryosphere, 7, 1205–1225, https://doi.org/10.5194/tc-7-1205-2013,https://doi.org/10.5194/tc-7-1205-2013, 2013
Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
C. M. Carmagnola, F. Domine, M. Dumont, P. Wright, B. Strellis, M. Bergin, J. Dibb, G. Picard, Q. Libois, L. Arnaud, and S. Morin
The Cryosphere, 7, 1139–1160, https://doi.org/10.5194/tc-7-1139-2013,https://doi.org/10.5194/tc-7-1139-2013, 2013
High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram
E. Collier, T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush
The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013,https://doi.org/10.5194/tc-7-779-2013, 2013
Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica, over recent decades
J. L. Roberts, A. D. Moy, T. D. van Ommen, M. A. J. Curran, A. P. Worby, I. D. Goodwin, and M. Inoue
The Cryosphere, 7, 263–273, https://doi.org/10.5194/tc-7-263-2013,https://doi.org/10.5194/tc-7-263-2013, 2013
Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, V. A. Pohjola, R. Pettersson, and J. H. van Angelen
The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012,https://doi.org/10.5194/tc-6-641-2012, 2012
Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula
P. Kuipers Munneke, M. R. van den Broeke, J. C. King, T. Gray, and C. H. Reijmer
The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012,https://doi.org/10.5194/tc-6-353-2012, 2012
The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland
P. Kuipers Munneke, M. R. van den Broeke, C. H. Reijmer, M. M. Helsen, W. Boot, M. Schneebeli, and K. Steffen
The Cryosphere, 3, 155–165, https://doi.org/10.5194/tc-3-155-2009,https://doi.org/10.5194/tc-3-155-2009, 2009
Cited articles
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411, 2010.
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., Palmer, S., and Wadham J.: Supraglacial forcing of subglacial hydrology in the ablation zone of the Greenland Ice Sheet, Geophys. Res. Lett., 38, L08502, https://doi.org/10.1029/2011GL047063, 2011.
Box, J. E.: Survey of Greenland instrumental temperature records: 1873–2001. Int. J. Climatol., 22, 1829–1847, 2002.
Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L. S., Stroeve, J. C., Rogers, J. C., Steffen, K., Haran, T., and Wang, S. H.: Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output, J. Climate, 19, 2783–2800, 2006.
Box, J. E., Ahlstrøm, A., Cappelen, J., Fettweis, X., Decker, D., Mote, T., Van As, D., Van de Wal, R. S. W., Vinther, B., and Wahr, J.: Greenland, in: State of the Climate in 2010, B. Am. Meteorol. Soc., 92, 161–171, 2011.
Brock, B. W., Willis, I. C., and Shaw, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, 2006.
Burgess, E. W., Forster, R. R., Box, J. E., Mosley-Thompson, E., Bromwich, D. H., Bales, R. C., and Smith, L. C.: A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007), J. Geophys. Res., 115, F02004, https://doi.org/10.1029/2009JF001293, 2010.
Csatho, B., Schenk, T., Van der Veen, C. J., and Krabill, W. B.: Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little Ice Age, J. Glaciol., 54, 131–144, 2008.
Fettweis, X.: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR, The Cryosphere, 1, 21–40, https://doi.org/10.5194/tc-1-21-2007, 2007.
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: MODIS/Terra Snow Cover Daily L3 Global 500 m Grid V005, [2000–2010], Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, updated daily, 2006.
Harper, J. T., Humphrey, N. F., Johnson, J. V., Meierbachtol, T. W., Brinkerhoff, D. J., and Landowski, C. M.: Integrating Borehole Measurements with Modeling of Englacial and Basal Conditions, Western Greenland, Abstract C42A-03 presented at 2010 Fall Meeting, AGU, San Francisco, CA, USA, 13–17 December, 2010.
Hasholt, B., Mikkelsen, A. B., Nielsen, M. H., and Larsen, M. A. D.: Observations of Runoff and Sediment and Dissolved Loads from the Greenland Ice Sheet at Kangerlussuaq, West Greenland, 2007 to 2010, submitted to Z. Geomorphol., 2012.
Howat, I. M., Ahn, Y., Joughin, I., Van den Broeke, M. R., Lenaerts, J. T. M., and Smith, M.: Mass balance of Greenland's three largest outlet glaciers, 2000–2010, Geophys. Res. Lett., 38, L12501, https://doi.org/10.1029/2011GL047565, 2011.
Khan, S. A., Wahr, J., Bevis, M., Velicogna, I., and Kendrick, E.: Spread of ice mass loss into northwest Greenland observed by GRACE and GPS, Geophys. Res. Lett., 37, L06501, https://doi.org/10.1029/2010GL042460, 2010.
Klein, A. G. and Stroeve, J.: Development and validation of a snow albedo algorithm for the MODIS instrument, Ann. Glaciol., 34, 45–52, 2002.
Mernild, S. H., Liston, G. E., Steffen, K., van den Broeke, M., and Hasholt, B.: Runoff and mass-balance simulations from the Greenland Ice Sheet at Kangerlussuaq (Søndre Strømfjord) in a 30-year perspective, 1979–2008, The Cryosphere, 4, 231–242, https://doi.org/10.5194/tc-4-231-2010, 2010.
Palmer, S., Shepherd, A., Nienow, P., and Joughin, I.: Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water, Earth Planet. Sc. Lett., 302, 423–428, 2011.
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, 461, 971–975, 2009.
Russell, A. J., Carrivick, J. L., Ingeman-Nielsen, T., Yde, J. C., Williams, M.: A new cycle of jökulhlaups at Russell Glacier, Kangerlussuaq, West Greenland, J. Glaciol., 57, 238–46, 2011.
Schaaf, C. B., Wang, Z., and Strahler, A. H.: Commentary on Wang and Zender – MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland, Remote Sens. Environ., 115, 1296–1300, 2011.
Schrama, E., Wouters, B., and Vermeersen, B.: Present day regional mass loss of Greenland observed with satellite gravimetry, Surv. Geophys., 32, 377–385, https://doi.org/10.1007/s10712-011-9113-7, 2011.
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage, Nature, 469, 521–524, https://doi.org/10.1038/nature09740, 2011.
Tedesco, M., Serreze, M., and Fettweis, X.: Diagnosing the extreme surface melt event over southwestern Greenland in 2007, The Cryosphere, 2, 159–166, https://doi.org/10.5194/tc-2-159-2008, 2008.
Tedesco, M., Fettweis, X., Van den Broeke, M. R., Van de Wal, R. S. W., Smeets, C. J. P. P., Van de Berg, W. J., Serreze, M. C., and Box, J. E.: The role of albedo and accumulation in the 2010 melting record in Greenland, Environ. Res. Lett., 6, 014005, https://doi.org/10.1088/1748-9326/6/1/014005, 2011.
van As, D.: Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland, J. Glaciol., 57, 208–220, 2011.
van de Wal, R. S. W. and Russell, A. J.: A comparison of energy balance calculations, measured ablation and meltwater runoff near Søndre Strømfjord, West Greenland, Global Planet. Change, 9, 29–38, 1994.
van de Wal, R. S. W., Gruell, W., Van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J.: Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316, 2005.
van den Broeke, M. R., Van As, D., Reijmer, C. H., and Van de Wal, R. S. W.: Assessing and improving the quality of unattended radiation observations in Antarctica, J. Atmos. Ocean. Tech., 21, 1417–1431, 2004.
van den Broeke, M. R., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R., and Oerlemans, J.: Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet, The Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008, 2008.
van den Broeke, M. R., Bamber, J., Ettema, J., Rignot, E., Schrama, E., Van de Berg, W. J., Van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning recent Greenland mass loss, Science, 326, 984–986, 2009.
van den Broeke, M. R., Smeets, C. J. P. P., and van de Wal, R. S. W.: The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390, https://doi.org/10.5194/tc-5-377-2011, 2011.
Wang, X. and Zender C. S.: MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland, Remote Sens. Environ., 114, 563–575, 2010.