Articles | Volume 6, issue 6
The Cryosphere, 6, 1497–1505, 2012
https://doi.org/10.5194/tc-6-1497-2012
The Cryosphere, 6, 1497–1505, 2012
https://doi.org/10.5194/tc-6-1497-2012
Research article
 | Highlight paper
12 Dec 2012
Research article  | Highlight paper | 12 Dec 2012

The stability of grounding lines on retrograde slopes

G. H. Gudmundsson et al.

Related authors

Slowdown of Shirase Glacier caused by strengthening alongshore winds
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-126,https://doi.org/10.5194/tc-2022-126, 2022
Preprint under review for TC
Short summary
The stability of present-day Antarctic grounding lines – Part A: No indication of marine ice sheet instability in the current geometry
Benoît Urruty, Emily A. Hill, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gael Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-104,https://doi.org/10.5194/tc-2022-104, 2022
Preprint under review for TC
Short summary
The predictive power of ice sheet models and the regional sensitivity of ice loss to basal sliding parameterisations: A case study of Pine Island and Thwaites Glaciers, West Antarctica
Jowan Menhinick Barnes and G. Hilmar Gudmundsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-109,https://doi.org/10.5194/tc-2022-109, 2022
Preprint under review for TC
Short summary
The instantaneous impact of calving and thinning on the Larsen C Ice Shelf
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere, 16, 883–901, https://doi.org/10.5194/tc-16-883-2022,https://doi.org/10.5194/tc-16-883-2022, 2022
Short summary
Predicting ocean-induced ice-shelf melt rates using a machine learning image segmentation approach
Sebastian Harry Reid Rosier, Christopher Y. S. Bull, and G. Hilmar Gudmundsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-396,https://doi.org/10.5194/tc-2021-396, 2022
Preprint under review for TC
Short summary

Related subject area

Numerical Modelling
A data exploration tool for averaging and accessing large data sets of snow stratigraphy profiles useful for avalanche forecasting
Florian Herla, Pascal Haegeli, and Patrick Mair
The Cryosphere, 16, 3149–3162, https://doi.org/10.5194/tc-16-3149-2022,https://doi.org/10.5194/tc-16-3149-2022, 2022
Short summary
Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022,https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models – Part 1: Evaluation of the snow-albedo effect
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022,https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Impact of runoff temporal distribution on ice dynamics
Basile de Fleurian, Richard Davy, and Petra M. Langebroek
The Cryosphere, 16, 2265–2283, https://doi.org/10.5194/tc-16-2265-2022,https://doi.org/10.5194/tc-16-2265-2022, 2022
Short summary
Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022,https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary

Cited articles

Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A., and LeBrocq, A. M.: Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet, Science, 324, 901–903, https://doi.org/10.1126/science.1169335, available at: http://www.sciencemag.org/content/324/5929/901.abstract, 2009.
Baral, D. R. and Hutter, C.: Asymptotic theories of ice sheets and ice shelves, in: Geomorphological Fluid Mechanics, edited by: Balmforth, N. J. and Provenzale, A., Lecture Notes in Physics, chap. 11, Springer, 227–278, 2001.
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503, https://doi.org/10.1029/2004GL022024, 2005.
Durand, G., Gagliardini, O., de Fleurian, D., Zwinger, T., and Meur, E. L.: Marine ice sheet dynamics: h}ysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, https://doi.org/10.1029/2008JF001170, 2009{a.
Durand, G., Gagliardini, O., Zwinger, T., Meur, E. L., and Hindmarsh, R.: Full-Stokes modeling of marine ice-sheets: influence of the grid size, Ann. Glaciol., 50, 109–114, 2009{b}.
Download