Articles | Volume 19, issue 2
https://doi.org/10.5194/tc-19-805-2025
https://doi.org/10.5194/tc-19-805-2025
Research article
 | 
21 Feb 2025
Research article |  | 21 Feb 2025

A minimal machine-learning glacier mass balance model

Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti

Related authors

Swiss glacier mass loss during the 2022 drought: persistent streamflow contributions amid declining melt water volumes
Marit van Tiel, Matthias Huss, Massimiliano Zappa, Tobias Jonas, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-404,https://doi.org/10.5194/egusphere-2025-404, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Recent history and future demise of Jostedalsbreen, the largest ice cap in mainland Europe
Henning Åkesson, Kamilla Hauknes Sjursen, Thomas Vikhamar Schuler, Thorben Dunse, Liss Marie Andreassen, Mette Kusk Gillespie, Benjamin Aubrey Robson, Thomas Schellenberger, and Jacob Clement Yde
EGUsphere, https://doi.org/10.5194/egusphere-2025-467,https://doi.org/10.5194/egusphere-2025-467, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A framework for three-dimensional dynamic modeling of mountain glaciers in the Community Ice Sheet Model (CISM v2.2)
Samar Minallah, William Lipscomb, Gunter Leguy, and Harry Zekollari
EGUsphere, https://doi.org/10.5194/egusphere-2024-4152,https://doi.org/10.5194/egusphere-2024-4152, 2025
Short summary
Surface nuclear magnetic resonance for studying an englacial channel on Rhonegletscher (Switzerland): Possibilities and limitations in a high-noise environment
Laura Gabriel, Marian Hertrich, Christophe Ogier, Mike Müller-Petke, Raphael Moser, Hansruedi Maurer, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3741,https://doi.org/10.5194/egusphere-2024-3741, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Modelling runoff in a glacierized catchment: the role of forcing product and spatial model resolution
Alexandra von der Esch, Matthias Huss, Marit van Tiel, Justine Berg, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3965,https://doi.org/10.5194/egusphere-2024-3965, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Physically based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025,https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
New glacier thickness and bed topography maps for Svalbard
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025,https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Quantifying the buttressing contribution of landfast sea ice and melange to Crane Glacier, Antarctic Peninsula
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024,https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024,https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
The demise of the world's largest piedmont glacier: a probabilistic forecast
Douglas Brinkerhoff, Brandon Tober, Michael Daniel, Victor Devaux-Chupin, Michael Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell Mitchell, and Martin Truffer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2354,https://doi.org/10.5194/egusphere-2024-2354, 2024
Short summary

Cited articles

Adams, P.: Glossary of Glacier Mass Balance and Related Terms, prepared by the Working Group on Mass-Balance Terminology and Methods of the International Association of Cryospheric Sciences (IASC), ARCTIC, 64, 47, https://doi.org/10.14430/arctic4151, 2011. a
Anilkumar, R., Bharti, R., Chutia, D., and Aggarwal, S. P.: Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques, The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, 2023. a, b
Arthur, D. and Vassilvitskii, S.: K-Means++: The Advantages of Careful Seeding, Proc. Annu. ACM-SIAM Symp. on Discrete Algorithms, 8, 1027–1035, 2007. a
Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., and Kargel, J. S.: Review of the status and mass changes of Himalayan-Karakoram glaciers, J. Glaciol., 64, 61–74, https://doi.org/10.1017/jog.2017.86, 2018. a
Benn, D. and Evans, D. J. A.: Glaciers and Glaciation, 2nd edition, Routledge, ISBN 9781444128390, https://doi.org/10.4324/9780203785010, 2014. a
Download
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug) and total precipitation (Oct–Feb). Our model can accurately predict glacier mass from 1961 to 2021 but struggles for extreme years (2022 and 2023).
Share