Articles | Volume 19, issue 2
https://doi.org/10.5194/tc-19-565-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-565-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Vincenzo Capozzi
CORRESPONDING AUTHOR
Department of Science and Technology, University of Naples “Parthenope”, Isola C4, CAP 80143, Italy
Francesco Serrapica
Department of Science and Technology, University of Naples “Parthenope”, Isola C4, CAP 80143, Italy
Armando Rocco
Department of Science and Technology, University of Naples “Parthenope”, Isola C4, CAP 80143, Italy
Clizia Annella
Center of Excellence for Telesensing of Environment and Model Prediction of Severe Events, University of L'Aquila, L'Aquila, Italy
Department of Science and Technology, University of Naples “Parthenope”, Isola C4, CAP 80143, Italy
Giorgio Budillon
Department of Science and Technology, University of Naples “Parthenope”, Isola C4, CAP 80143, Italy
Related authors
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
Short summary
This work describes the entire rescue process, from digitization to quality control, of a new historical dataset that includes sub-daily meteorological observations collected in Montevergine (southern Italy) since the late 19th century. These data enhance and supplement sub-daily datasets currently available in Mediterranean regions. Moreover, they offer a unique opportunity to investigate meteorological and climatological features of the mountainous environment prior to the 1950s.
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017, https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Short summary
This work aims to provide a comparison between three dimensional and four dimensional variational data assimilation methods (3D-Var and 4D-Var) for a heavy rainfall case in central Italy. Nine simulations are compared in terms of rainfall forecast and precipitation measured by the gauges through three statistical indicators. The assimilation of conventional observations with 4D-Var method improves the quantitative precipitation forecast (QPF) compared to 3D-Var.
Vincenzo Capozzi and Giorgio Budillon
Adv. Geosci., 44, 35–51, https://doi.org/10.5194/adgeo-44-35-2017, https://doi.org/10.5194/adgeo-44-35-2017, 2017
Short summary
Short summary
The extreme temperature events, the heat and cold waves, besides to have a significant impact on human health and activities, have negative influences also on mountain ecosystems. This work provides a characterization of heat and cold waves variability and trends in high-elevation sites of Central Mediterranean area, by using the long-term temperature time series collected in Montevergine. Main results highlight a positive trend in heat waves frequency and severity in the last 40 years.
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-417, https://doi.org/10.5194/essd-2024-417, 2024
Preprint under review for ESSD
Short summary
Short summary
This study gathered water temperature data in the last 30 years from several research cruises using XBT probes between New Zealand and the Ross Sea (Antarctica). These observations, collected in the framework of Italian National Antarctic Research Program, were rigorously checked for accuracy and corrected for depth and temperature bias. The public dataset offers valuable information to get insights into the Southern Ocean's climate and improve satellite observations and oceanographic models.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022, https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary
Short summary
This work documents the snowfall variability observed from late XIX century to recent years in Montevergine (southern Italy) and discusses its relationship with large-scale atmospheric circulation. The main results lie in the absence of a trend until mid-1970s, in the strong reduction of the snowfall quantity and frequency from mid-1970s to 1990s and in the increase of both variables from early 2000s. In the past 50 years, the nivometric regime has been strongly modulated by AO and NAO indices.
Gaia Mattei, Diana Di Luccio, Guido Benassai, Giorgio Anfuso, Giorgio Budillon, and Pietro Aucelli
Nat. Hazards Earth Syst. Sci., 21, 3809–3825, https://doi.org/10.5194/nhess-21-3809-2021, https://doi.org/10.5194/nhess-21-3809-2021, 2021
Short summary
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
Short summary
This work describes the entire rescue process, from digitization to quality control, of a new historical dataset that includes sub-daily meteorological observations collected in Montevergine (southern Italy) since the late 19th century. These data enhance and supplement sub-daily datasets currently available in Mediterranean regions. Moreover, they offer a unique opportunity to investigate meteorological and climatological features of the mountainous environment prior to the 1950s.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Diana Di Luccio, Guido Benassai, Giorgio Budillon, Luigi Mucerino, Raffaele Montella, and Eugenio Pugliese Carratelli
Nat. Hazards Earth Syst. Sci., 18, 2841–2857, https://doi.org/10.5194/nhess-18-2841-2018, https://doi.org/10.5194/nhess-18-2841-2018, 2018
Short summary
Short summary
Forecasting and hindcasting the action of sea storms on piers, coastal structures and beaches is important to mitigate their effects. To this end, with particular regard to low coasts and beaches, we have configured a computational model chain based partly on open-access models and partly on an ad-hoc-developed numerical calculator to evaluate beach wave run-up levels. The results were validated by a set of specially conceived video-camera-based experiments on a micro-tidal beach.
Guido Benassai, Pietro Aucelli, Giorgio Budillon, Massimo De Stefano, Diana Di Luccio, Gianluigi Di Paola, Raffaele Montella, Luigi Mucerino, Mario Sica, and Micla Pennetta
Nat. Hazards Earth Syst. Sci., 17, 1493–1503, https://doi.org/10.5194/nhess-17-1493-2017, https://doi.org/10.5194/nhess-17-1493-2017, 2017
Short summary
Short summary
The study of the shallow coastal area of the Sele mouth in the Gulf of Salerno (southern Italy) identified the features of nearshore circulation,
which often produced rip currents. The occurrence of a rip current cell circulation in restricted ranges of heights, periods and incident directions was
related to the non-dimensional fall velocity parameter, which proved to be an efficient index for rip current formation.
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017, https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Short summary
This work aims to provide a comparison between three dimensional and four dimensional variational data assimilation methods (3D-Var and 4D-Var) for a heavy rainfall case in central Italy. Nine simulations are compared in terms of rainfall forecast and precipitation measured by the gauges through three statistical indicators. The assimilation of conventional observations with 4D-Var method improves the quantitative precipitation forecast (QPF) compared to 3D-Var.
Vincenzo Capozzi and Giorgio Budillon
Adv. Geosci., 44, 35–51, https://doi.org/10.5194/adgeo-44-35-2017, https://doi.org/10.5194/adgeo-44-35-2017, 2017
Short summary
Short summary
The extreme temperature events, the heat and cold waves, besides to have a significant impact on human health and activities, have negative influences also on mountain ecosystems. This work provides a characterization of heat and cold waves variability and trends in high-elevation sites of Central Mediterranean area, by using the long-term temperature time series collected in Montevergine. Main results highlight a positive trend in heat waves frequency and severity in the last 40 years.
Vincenzo Capozzi, Errico Picciotti, Vincenzo Mazzarella, Giorgio Budillon, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-177, https://doi.org/10.5194/hess-2016-177, 2016
Revised manuscript not accepted
Short summary
Short summary
This work explores the potentialities in urban hailstorms detection of X-band miniradar measurements. The results show that the latter are suitable for early monitoring of hail events at urban scale, especially when combined with conventional meteorological data. The experimental hail detection product developed in this study, although trained for a specific urban environment (i.e. Naples urban area), can be easily adapted to other areas where detailed meteorological information is needed.
Related subject area
Discipline: Snow | Subject: Seasonal Snow
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Characterization of non-Gaussianity in the snow distributions of various landscapes
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Spatial and temporal changes in autumn Eurasian snow cover and its relationship with the Arctic Oscillation
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Impact of measured and simulated tundra snowpack properties on heat transfer
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Observed snow depth trends in the European Alps: 1971 to 2019
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Evaluation of long-term Northern Hemisphere snow water equivalent products
Towards a webcam-based snow cover monitoring network: methodology and evaluation
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Converting snow depth to snow water equivalent using climatological variables
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025, https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Short summary
We evaluate and rank 23 different datasets on their ability to accurately estimate historical snow amounts. The evaluation uses new a set of surface snow measurements with improved spatial coverage, enabling evaluation across both mountainous and nonmountainous regions. Performance measures vary tremendously across the products: while most perform reasonably in nonmountainous regions, accurate representation of snow amounts in mountainous regions and of historical trends is much more variable.
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024, https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024, https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two types of measurements – snow courses and airborne gamma SWE estimates – and analyze how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis to produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Gareth J. Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1892, https://doi.org/10.5194/egusphere-2024-1892, 2024
Short summary
Short summary
Eurasian autumn snow cover (SC) can influence Northern Hemisphere weather in the following winter by affecting the Arctic Oscillation (AO) mode of atmospheric variability. We find that the relationship between the rate of October snow advance and the AO is predominantly of opposite sign between east and west Eurasia. Periods when the SC advance is strongly related to the AO, and thus might be used for weather prediction, occur when the sign of the relationship is reversed in one of the regions.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023, https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Short summary
Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly used global products in the Andes and low-resolution products in the western United States, where snow is the key element of water resources. In addition to precipitation, elevation differences and model mechanism variances drive snow uncertainty. This work provides insights for research applying these products and generating future products in areas with limited in situ data.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Short summary
Beyond directly using in situ observations, often sparsely available in mountain regions, climate model simulations and so-called reanalyses are increasingly used for climate change impact studies. Here we evaluate such datasets in the European Alps from 1950 to 2020, with a focus on snow cover information and its main drivers: air temperature and precipitation. In terms of variability and trends, we identify several limitations and provide recommendations for future use of these datasets.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023, https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
Short summary
Quantifying change in the potential snowfall phenology (PSP) is an important area of research for understanding regional climate change past, present, and future. However, few studies have focused on the PSP and its change in alpine mountainous regions. We proposed three innovative indicators to characterize the PSP and its spatial–temporal variation. Our study provides a novel approach to understanding PSP in alpine mountainous regions and can be easily extended to other snow-dominated regions.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022, https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Short summary
The mountainous snow cover is highly variable at all temporal and spatial scales. Snow cover models suffer from large errors, while snowpack observations are sparse. Data assimilation combines them into a better estimate of the snow cover. A major challenge is to propagate information from observed into unobserved areas. This paper presents a spatialized version of the particle filter, in which information from in situ snow depth observations is successfully used to constrain nearby simulations.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021, https://doi.org/10.5194/tc-15-5261-2021, 2021
Short summary
Short summary
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High Mountain Asia, based on a new snow reanalysis dataset. The dataset was derived utilizing satellite-observed snow information, which spans across 18 water years, at a high spatial (~ 500 m) and temporal (daily) resolution. Snow mass and snow storage distribution over space and time are analyzed in this paper, which brings new insights into understanding the snowpack variability over this region.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Short summary
There are many challenges for accurate snow depth estimation using passive microwave data. Machine learning (ML) techniques are deemed to be powerful tools for establishing nonlinear relations between independent variables and a given target variable. In this study, we investigate the potential capability of the random forest (RF) model on snow depth estimation at temporal and spatial scales. The result indicates that the fitted RF algorithms perform better on temporal than spatial scales.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Céline Portenier, Fabia Hüsler, Stefan Härer, and Stefan Wunderle
The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020, https://doi.org/10.5194/tc-14-1409-2020, 2020
Short summary
Short summary
We present a method to derive snow cover maps from freely available webcam images in the Swiss Alps. With marginal manual user input, we can transform a webcam image into a georeferenced map and therewith perform snow cover analyses with a high spatiotemporal resolution over a large area. Our evaluation has shown that webcams could not only serve as a reference for improved validation of satellite-based approaches, but also complement satellite-based snow cover retrieval.
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019, https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Short summary
Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests to be too cold and melt too late.
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Short summary
The mass balance of very small glaciers is often governed by anomalous snow accumulation, winter precipitation being multiplied by snow redistribution processes, or by suppressed snow ablation driven by micrometeorological effects lowering net radiation and turbulent heat exchange. In this study we discuss the relative contribution of snow accumulation (avalanches) versus micrometeorology (katabatic flow) on the mass balance of the lowest perennial ice field of the Alps, the Ice Chapel.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Short summary
We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Cited articles
Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, 1986.
Alexandersson, H. and Moberg, A.: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends, Int. J. Climatol., 17, 25–34, 1997.
Allan, R., Brohan, P., Compo, G. P., Stone, R., Luterbacher, J., and Brönnimann, S.: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative, B. Am. Meteorol. Soc., 92, 1421–1425, 2011.
Anderberg, M. R.: Cluster analysis for applications, Academic Press, New York, https://doi.org/10.1016/C2013-0-06161-0, 1973.
Annella, C., Budillon, G., and Capozzi, V.: On the role of local and large-scale atmospheric variability in snow cover duration: a case study of Montevergine Observatory (Southern Italy), Environ. Res. Commun., 5, 031005, https://doi.org/10.1088/2515-7620/acc3e3, 2023.
Bartolini, E., Claps, P., and D'Odorico, P.: Connecting European snow cover variability with large scale atmospheric patterns, Adv. Geosci., 26, 93–97, https://doi.org/10.5194/adgeo-26-93-2010, 2010.
Bartolomeu, S., Carvalho, M. J., Marta-Almeida, M., Melo-Gonçalves, P., and Rocha, A.: Recent trends of extreme pre-cipitation indices in the Iberian Peninsula using observations and WRF model results, Phys. Chem. Earth, 94, 10–21, https://doi.org/10.1016/j.pce.2016.06.005, 2016.
Beaumet, J., Ménégoz, M., Morin, S., Gallée, H., Fettweis, X., Six, D., Vincent, C., Wilhelm, B., and Anquetin, S.: Twentieth century temperature and snow cover changes in the French Alps, Reg. Environ. Change, 21, 114, https://doi.org/10.1007/s10113-021-01830-x, 2021.
Bertoldi, G., Bozzoli, M., Crespi, A., Matiu, M., Giovannini, L., Zardi, D., and Majone, B.: Diverging snowfall trends across months and elevation in the northeastern Italian Alps, Int. J. Climatol., 43, 2794–2819, https://doi.org/10.1002/joc.8002, 2023.
Blanchet, J., Marty, C., and Lehning, M.: Extreme value statistics of snowfall in the Swiss Alpine region, Water Resour. Res., 45, W05424, https://doi.org/10.1029/2009WR007916, 2009.
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating snow-cover trends from space, Nat. Clim. Change, 8, 924–928, https://doi.org/10.1038/s41558-018-0318-3, 2018.
Brönnimann, S., Annis, J., Dann, W., Ewen, T., Grant, A. N., Griesser, T., Krähenmann, S., Mohr, C., Scherer, M., and Vogler, C.: A guide for digitising manuscript climate data, Clim. Past, 2, 137–144, https://doi.org/10.5194/cp-2-137-2006, 2006.
Brunetti, M., Maugeri, M., Nanni, T., Simolo, C., and Spinoni, J.: High-resolution temperature climatology for Italy: interpolation method intercomparison, Int. J. Climatol., 34, 1278–1296, https://doi.org/10.1002/joc.3764, 2014.
Buchmann, M., Coll, J., Aschauer, J., Begert, M., Brönnimann, S., Chimani, B., Resch, G., Schöner, W., and Marty, C.: Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods, The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, 2022.
Buchmann, M., Resch, G., Begert, M., Brönnimann, S., Chimani, B., Schöner, W., and Marty, C.: The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland, The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, 2023.
Caloiero, T., Coscarelli, R., Ferrari, E., and Mancini, M.: Trend detection of annual and seasonal rainfall in Calabria (southern Italy), Int. J. Climatol., 31, 44–56, https://doi.org/10.1002/joc.2055, 2011.
Capozzi, V., Cotroneo, Y., Castagno, P., De Vivo, C., and Budillon, G.: Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963, Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, 2020.
Capozzi, V., De Vivo, C., and Budillon, G.: Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015, The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022, 2022.
Capozzi, V., Annella, C., and Budillon, G.: Classification of daily heavy precipitation patterns and associated synoptic types in the Campania Region (southern Italy), Atmos. Res., 289, 106781, https://doi.org/10.1016/j.atmosres.2023.106781, 2023.
Capozzi, V., Serrapica, F., Rocco, A., Annella, C., and Budillon, G.: Historical snowfall precipitation data in the Apennine Mountains, Italy, Zenodo [data set], https://doi.org/10.5281/zenodo.12699507, 2024.
Carey, S. K., Tetzlaff, D., Buttle, J., Laudon, H., McDonnell, J., McGuire, K., Seibert, J., Soulsby, C., and Shanley, J.: Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments, Water Resour. Res., 49, 6194–6207, https://doi.org/10.1002/wrcr.20469, 2013.
Cleveland, W. S.: Robust locally weighted regression and smoothing scatter plots, J. Am. Stat. A., 74, 829–836, https://doi.org/10.1080/01621459.1979.10481038, 1979.
Climate Prediction Center: Climate Prediction Center: Northern Hemisphere Teleconnections Patterns, https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml, last access: 10 January 2024.
Colombo, N., Valt, M., Romano, E., Salerno, F., Godone, D., Cianfarra, P., Freppaz, M., Maugeri, M., and Guyennon, N.: Long-term trend of snow water equivalent in the Italian Alps, J. Hydrol., 614, 128532, https://doi.org/10.1016/j.jhydrol.2022.128532, 2022.
Colombo, N., Guyennon, N., Valt, M., Salerno, F., Godone, D., Cianfarra, P., Freppaz, M., Maugeri, M., Manara, V., Acquaotta, F., Pietrangeli, A. B., and Romano, E.: Unprecedented snow-drought conditions in the Italian Alps during the early 2020s, Environ. Res. Lett. 18, 074014, https://doi.org/10.1088/1748-9326/acdb88, 2023.
Crespi, A., Brunetti, M., Lentini, G., and Maugeri, M.: 1961–1990 high-resolution monthly precipitation climatologies for Italy, Int. J. Climatol., 38, 878–895, https://doi.org/10.1002/joc.5217, 2018.
Curci, G., Guijarro, J. A., Di Antonio, L., Di Bacco, M., Di Lena, B., and Scorzini, A. R.: Building a local climate reference dataset: Application to the Abruzzo region (Central Italy), 1930–2019, Int. J. Climatol., 41, 4414–4436, https://doi.org/10.1002/joc.7081, 2021.
D'Errico, M., Pons, F., Yiou, P., Tao, S., Nardini, C., Lunkeit, F., and Faranda, D.: Present and future synoptic circulation patterns associated with cold and snowy spells over Italy, Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, 2022.
De Bellis, A., Pavan, V., and Levizzani, V.: Climatologia e variabilità interannuale della neve sull'Appennino Emiliano Romagnolo, Quaderno Tecnico ARPA-SIMC no. 19/2010, 118, https://doi.org/10.13140/2.1.4685.7287, 2010.
Diodato, N., Ljungqvist, F. C., and Bellocchi, G.: Empirical modelling of snow cover duration patterns in complex terrains of Italy, Theor. Appl. Climatol., 147, 1195–212, https://doi.org/10.1007/s00704-021-03867-8, 2022.
Dumont, Z. B., Gascoin, S., and Inglada, J.: Snow and cloud classification in historical SPOT images: An image emulation approach for training a deep learning model without reference data, IEEE J. Sel. Top. Appl. Earth Obs., 17, 5541–5552, https://doi.org/10.1109/JSTARS.2024.3361838, 2024.
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., and Lesaffre, B.: Reanalysis of 47 Years of Climate in the French Alps (1958–2005): Climatology and Trends for Snow Cover, J. Appl. Meteorol. Clim., 48, 2487–2512, https://doi.org/10.1175/2009JAMC1810.1, 2009.
Easterling, D. R. and Peterson, T. C.: A new method for detecting and adjusting for undocumented discontinuities in climatological time series, Int. J. Climatol., 15, 369–377, https://doi.org/10.1002/joc.3370150403, 1995.
Fazzini, M.: Caratterizzazione generale dei fenomeni di innevamento nel territorio italiano, Neve e Valanghe, 60, 36–49, https://aineva.it/wp-content/uploads/Pubblicazioni/Rivista60/NV60.pdf (last access: 4 February 2024), 2007.
Fazzini, M., Magagnini, L., Giuffrida, A., Frustaci, G., Di Lisciando, M., and Gaddo, M.: Nevosità in Italia negli ultimi 20 anni, Neve e Valanghe, 58, 22–33, https://aineva.it/wp-content/uploads/Pubblicazioni/Rivista58/NV58.pdf (last access: 5 February 2024), 2006.
Fragoso, M. and Tildes Gomes, P.: Classification of daily abundant rainfall patterns and associated large-scale atmospheric circulation types in Southern Portugal, Int. J. Climatol., 28, 537–544, https://doi.org/10.1002/joc.1564, 2008.
Fugazza, D., Manara, V., Senese, A., Diolaiuti, G., and Maugeri, M.: Snow cover variability in the Greater Alpine region in the MODIS era (2000–2019), Remote Sens., 13, 2945, https://doi.org/10.3390/rs13152945, 2021.
Gascoin, S., Monteiro, D., and Morin, S.: Reanalysis-based contextualization of real-time snow cover monitoring from space, Environ. Res. Lett., 17, 114044, https://doi.org/10.1088/1748-9326/ac9e6a, 2022.
Gazzolo, T. and Pinna, M.: La nevosità in Italia nel Quarantennio 1921–1960 (gelo, neve e manto nevoso), Ministero dei Lavori Pubblici, Consiglio Superiore, Servizio Idrografico, Pubblicazione no. 26 del Servizio, Istituto Poligrafico dello Stato, Roma, 216 pp., 1973.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Guijarro, J. A.: Homogenization of climatic series with Climatol, Climatol manual, https://www.climatol.eu/homog_climatol-en.pdf (last access: 15 February 2024), 2018.
Hamed, K. H.: Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis, J. Hydrol., 349, 350–363, https://doi.org/10.1016/j.jhydrol.2007.11.009, 2008.
Hammond, J. C., Saavedra, F. A., and Kampf, S. K.: Global snow zone maps and trends in snow persistence 2001–2016, Int. J. Climatol., 38, 4369–4383, https://doi.org/10.1002/joc.5674, 2018.
Hatzaki, M., Flocas, H. A., Asimakopoulos, D. N., and Maheras, P.: The eastern Mediterranean teleconnection pattern: identification and definition, Int. J. Climatol., 27, 727–737, https://doi.org/10.1002/joc.1429, 2007.
Hatzaki, M., Flocas, H. A., Giannakopoulos, C., and Maheras, P.: The impact of the eastern Mediterranean teleconnection pattern on the Mediterranean climate, J. Climate, 22, 977–992, https://doi.org/10.1175/2008JCLI2519.1, 2009.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–202, https://doi.org/10.1017/9781009157964.004, 2019.
Kendall, M. G.: Rank correlation methods, 3rd edn., Hafner Publishing Company, New York, 1962.
Kidson, J. W.: An automated procedure for the identification of synoptic types applied to the new zealand region, Int. J. Climatol., 14, 711–721, https://doi.org/10.1002/joc.3370140702, 1994.
Kim, Y., Kim, K.-Y., and Kim, B.-M.: Physical mechanisms of European winter snow cover variability and its relationship to the NAO, Clim. Dynam., 40, 1657–1669, https://doi.org/10.1007/s00382-012-1365-5, 2013.
Klein, G., Vitasse, Y., Rixen, C., Marty, C., and Rebetez, M.: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset, Clim. Change, 139, 637–649, https://doi.org/10.1007/s10584-016-1806-y, 2016.
Kotlarski, S., Gobiet, A., Morin, S., Olefs, M., Rajczak, J., and Samacoïts, R.: 21st century alpine climate change, Clim. Dynam., 60, 65–86, https://doi.org/10.1007/s00382-022-06303-3, 2022.
Kuya, E. K., Gjelten, H. M., and Tveito, O. E.: Homogenization of Norwegian monthly precipitation series for the period 1961–2018, Adv. Sci. Res., 19, 73–80, https://doi.org/10.5194/asr-19-73-2022, 2022.
Leporati, E. and Mercalli, L.: Snowfall series of Turin, 1784–1992: climatological analysis and action on structures, Ann. Glaciol., 19, 77–84, https://doi.org/10.3189/S0260305500011010, 1994.
Magnani, A., Viglietti, D., Godone, D., Williams, M. W., Balestrini, R., and Freppaz, M.: Interannual variability of soil N and C forms in response to snow-cover duration and pedoclimatic conditions in alpine tundra, northwest Italy, Arct. Antarct. Alp. Res., 49, 227–42, https://doi.org/10.1657/AAAR0016-037, 2017.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945.
Marcolini, G., Bellin, A., Disse, M., and Chiogna, G.: Variability in snow depth time series in the Adige catchment, J. Hydrol. Reg. Stud., 13, 240–254, https://doi.org/10.1016/j.ejrh.2017.08.007, 2017b.
Marke, T., Hanzer, F., Olefs, M., and Strasser, U.: Simulation of past changes in the Austrian snow cover 1948–2009, J. Hydrometeorol., 19, 1529–1545, https://doi.org/10.1175/JHM-D-17-0245.1, 2018.
Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res. Lett., 35, L12501, https://doi.org/10.1029/2008gl033998, 2008.
Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics, Clim. Change, 111, 705–721, https://doi.org/10.1007/s10584-011-0159-9, 2012.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.
Meteomont: Manual weather stations data, https://meteomont.carabinieri.it/stazioni-manuali?lang=en, last access: 4 January 2024a.
Meteomont: Historical archive of weather and snow data, https://meteomont.carabinieri.it/archivio-condizioni-meteonivologiche?lang=en, last access: 4 January 2024b.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic declines in snowpack in the western US, npj Climate and Atmospheric Science, 1, 1–6, https://doi.org/10.1038/s41612-018-0012-1, 2018.
Notarnicola, C.: Hotspots of snow cover changes in global mountain regions over 2000–2018, Remote Sens. Environ., 243, 111781, https://doi.org/10.1016/j.rse.2020.111781, 2020.
Olefs, M., Koch, R., Schöner, W., and Marke, T.: Changes in snow depth, snow cover duration, and potential snowmaking conditions in Austria, 1961–2020 – a model based approach, Atmosphere, 11, 7600, https://doi.org/10.3390/atmos11121330, 2020.
Ortiz-Gómez, R., Muro-Hernández, L. J., and Flowers-Cano, R. S.: Assessment of extreme precipitation through climate change indices in Zacatecas, Mexico, Theor. Appl. Climatol., 141, 1541–1557, https://doi.org/10.1007/s00704-020-03293-2, 2020.
Percival, D. B.: Analysis of Geophysical Time Series Using Discrete Wavelet Transforms: An Overview, in: Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, edited by: Donner, R. V. and Barbosa, S. M., vol. 112, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-78938-3_4, 2008.
Petriccione, B. and Bricca, A.: Thirty years of ecological research at the Gran Sasso d'Italia LTER site: climate change in action, Nature Conservation, 34, 9–39, https://doi.org/10.3897/natureconservation.34.30218, 2019.
Scherrer, S. C., Wüthrich, C., Croci-Maspoli, M., Weingartner, R., and Appenzeller, C.: Snow variability in the Swiss Alps 1864–2009, Int. J. Climatol., 33, 3162–3173, https://doi.org/10.1002/joc.3653, 2013.
Sen, P. K.: Estimates of the regression coefficient based on Ken-dall's tau, J. Am. Stat. A., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.
Song, X., Song, S., Sun, W., Mu, X., Wang, S., Li, J., and Li, Y.: Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013, Atmos. Res., 157, 137–152, https://doi.org/10.1016/j.atmosres.2015.01.022, 2015.
Sumner, G., Guijarro, J. A., and Ramis, C.: The impact of surface circulation on significant daily rainfall patterns over Mallorca, Int. J. Climatol., 15, 673–696, https://doi.org/10.1002/joc.3370150607, 1995.
Tecilla, G.: L'indagine nazionale su neve e valanghe. Lo stato delle reti di monitoraggio e delle banche di dati nivometeorologici in Italia, Neve e Valanghe, 60, 12–35, https://aineva.it/wp-content/uploads/Pubblicazioni/Rivista60/NV60.pdf (last access: 6 February 2024), 2007.
Terzago, S., Cassardo, C., Cremonini, R., and Fratianni, S.: Snow Precipitation and Snow Cover Climatic Variability for the Period 1971–2009 in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study, Water, 2, 773–787, https://doi.org/10.3390/w2040773, 2010.
Terzago, S., Fratianni, S., and Cremonini, R.: Winter precipitation in Western Italian Alps (1926–2010), Meteorol. Atmos. Phys., 119, 125–136, https://doi.org/10.1007/s00703-012-0231-7, 2013.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Tramblay, Y., El Adlouni, S., and Servat, E.: Trends and variability in extreme precipitation indices over Maghreb countries, Nat. Hazards Earth Syst. Sci., 13, 3235–3248, https://doi.org/10.5194/nhess-13-3235-2013, 2013.
Valt, M. and Cianfarra, P.: Recent snow cover variability in the Italian Alps, Cold Reg. Sci. Technol., 64, 146–157, https://doi.org/10.1016/j.coldregions.2010.08.008, 2010.
Vernay, M., Lafaysse, M., Monteiro, D., Hagenmuller, P., Nheili, R., Samacoïts, R., Verfaillie, D., and Morin, S.: The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021), Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022, 2022.
World Meteorological Organization: Guide to Meteorological Instruments and Methods of Observation, 2008 Edition, WMO-no. 8 (Seventh edition), https://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/OLD-pages/CIMO_Guide-7th_Edition-2008.html (last access: 1 February 2024), 2008.
World Meteorological Organization: Guidelines on Best Practices for Climate Data Rescue 2016, WMO-No. 1182, https://public.wmo.int/en/resources/library/guidelines-best-practices-climate-data-rescue (last access: 15 January 2024), 2016.
Short summary
This “journey through time” discovers historical information about snow precipitation in the Italian Apennines. In this area, in the second half of the past century, a gradual decline in snow persistence on the ground, as well as in the frequency of occurrence of snowfall events, has been observed, especially in sites located above 1000 m above sea level. The old data rescued in this study strongly enhance our knowledge about past snowfall variability and climate in the Mediterranean area.
This “journey through time” discovers historical information about snow precipitation in the...