
The Cryosphere, 19, 565–595, 2025
https://doi.org/10.5194/tc-19-565-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Historical snow measurements in the central and southern Apennine
Mountains: climatology, variability, and trend
Vincenzo Capozzi1, Francesco Serrapica1, Armando Rocco1, Clizia Annella2,1, and Giorgio Budillon1

1Department of Science and Technology, University of Naples “Parthenope”, Isola C4, CAP 80143, Italy
2Center of Excellence for Telesensing of Environment and Model Prediction of Severe Events,
University of L’Aquila, L’Aquila, Italy

Correspondence: Vincenzo Capozzi (vincenzo.capozzi@uniparthenope.it)

Received: 8 April 2024 – Discussion started: 5 June 2024
Revised: 19 November 2024 – Accepted: 11 December 2024 – Published: 5 February 2025

Abstract. This work presents an analysis of historical snow
precipitation data collected in the period 1951–2001 in cen-
tral and southern Apennines (Italy), an area scarcely inves-
tigated so far. To pursue this aim, we used the monthly
observations of the snow cover duration, number of days
with snowfall and total height of new snow collected at 129
stations located between 288 and 1750 m above sea level.
Such data have been manually digitised from the Hydro-
logical Yearbooks of the Italian National Hydrological and
Mareographic Service. The available dataset has been pri-
marily analysed to build a reference climatology (related to
the 1971–2000 period) for the considered Apennine region.
More specifically, using a methodology based on principal
component analysis and k-means clustering, we have iden-
tified different modes of spatial variability, mainly depend-
ing on the elevation, which reflect different climatic zones.
Subsequently, focusing on the number of days with snowfall
and snow cover duration on the ground, we have carried out
a linear trend analysis, employing the Theil–Sen estimator
and the Mann–Kendall test. An overall negative tendency has
been found for both variables. For clusters including only sta-
tions above 1000 m above the sea level, a significant (at 90 %
or 95 % confidence levels) decreasing trend has been found
in the winter season (i.e. from December to February), with
− 3.2 [−6.0 to 0.0] d per 10 years for snow cover duration
and −1.6 [−2.5 to −0.6] d per 10 years for number of days
with snowfall. Moreover, in all considered seasons, a clear
and direct relationship between the trend magnitude and ele-
vation has emerged. In addition, using a cross-wavelet analy-
sis, we found a close in-phase linkage on a decadal timescale
between the investigated snow indicators and the Eastern

Mediterranean teleconnection Pattern. For both snow cover
duration and number of days with snowfall, such connection
appears to be more relevant in the full (i.e. from November
to April) and in the late (i.e. from February to April) seasons.

1 Introduction

In recent years, a great deal of attention has been devoted
to the study of past snow variability worldwide, mainly in
mountain regions. The great interest in this crucial climate
variable is motivated by several reasons. The snow, in fact,
is a pivotal component of the hydrological cycle and ex-
erts, at the same time, a relevant impact on the energy bal-
ance, controlling the land surface albedo. In addition, the
snow strongly affects the complex ecosystems of mountain
areas, as well as the biogeochemical cycles (e.g. Magnani
et al., 2017). Last, the occurrence, as well as the persis-
tence of snow on the ground, is decisive for winter tourism
and for several economic activities (for instance, hydropower
production). Therefore, when considering the recent climate
changes that are posing serious threats to the cryosphere and
mountain regions (e.g. Mote et al., 2018; Kotlarski et al.,
2022), it is crucial to recover and analyse historical long-
term time series of snow data to assess the variability and
tendencies.

In the last few decades, satellite observations and climate
model reanalyses have offered new opportunities for built-up
snow climatologies worldwide (e.g. Bormann et al., 2018;
Olefs et al., 2020), especially in regions in which the avail-
ability of in situ data is scarce or totally absent. However, it
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should be noted that remote sensing could provide informa-
tion about snow cover at an adequate resolution for reliable
climatological analyses only for the last 20 years, after the
deployment of the Moderate Resolution Imaging Spectrora-
diometer (MODIS) constellation (Fugazza et al., 2021; Gas-
coin et al., 2022; Dumont et al., 2024). On the other hand,
as highlighted by Vernay et al. (2022), the reliability of the
reanalyses data can be adversely affected by the low spatial
resolution and by the rough representation of several sub-
grid processes, such as the orographic precipitation and the
local thermal inversion in mountain valleys. The latter can
strongly condition local nivometric regimes, particularly in
mountainous areas characterised by complex orography. For
such reasons, despite their well-known weaknesses (Notarni-
cola, 2020), the ground-based historical observations can be
still considered a cornerstone for studies searching for evi-
dence of past snow variability. Accurate in situ snow mea-
sures open the chance to conduct an in-depth analysis of
the climate change impacts in mountain areas and their re-
lationship with the altitude, especially when they can be cou-
pled with high-quality and homogenised temperature and to-
tal precipitation measurements (Beaumet et al., 2021). In ad-
dition, the ground observations can be considered an invalu-
able benchmark to validate satellite and modelled snow data.

In the large body of available scientific literature, snow has
been investigated employing different parameters, namely
the snow depth (hereafter HS), the height of new snow (here-
after HN), the snow water equivalent, the snow cover area,
the snow cover duration (hereafter SCD), and the number of
days with snowfall (hereafter NDS). Note that in the litera-
ture, SCD generally indicates the number of days with snow
cover on the ground during a given period, whereas the NDS
parameter represents the number of days, in a determined
time interval, on which the amount of fresh snow reaches
a determined threshold (usually, 1.0 cm).

Focusing on the central Mediterranean region, which can
be considered a key area for the study of climate changes,
mainly due to its complex meteorological regime and its
challenging topography, a lot of research has been done in
the Alpine region (Marty, 2008; Terzago et al., 2010; Valt
and Cianfarra, 2010; Marty and Blanchet, 2012; Scherrer
et al., 2013; Terzago et al., 2013; Marcolini et al., 2017b;
Matiu et al., 2021; Colombo et al., 2022; Bertoldi et al.,
2023; Colombo et al., 2023). In this area, in fact, there is a
great availability of snow climatological time series, some of
them stretching back to the late 18th century (Leporati and
Mercalli, 1994). Although it is clearly challenging to draw
a coherent picture regarding changes in Alpine nivometric
regimes since the trend direction and significance are highly
dependent on the considered time period, a general decreas-
ing tendency has been found for SCD in the period 1972–
2006 (Bartolini et al., 2010), as well as in HS for the period
1971–2019 (Matiu et al., 2021).

The Apennine region, despite having a good heritage of
old snow data, has been poorly investigated up to now. The

peer-reviewed literature for this area counts only few recent
works (Petriccione and Bricca, 2019; Diodato et al., 2022;
Capozzi et al., 2022; Annella et al., 2023), which presented
evidence based on a single or a few climatological time se-
ries. These studies highlighted a generally negative tendency
in snow for different indicators, except for the last 20 years,
in which a recovery of SCD, HN, and NDS has been de-
tected in the southern Apennines (Capozzi et al., 2022; An-
nella et al., 2023). Other interesting results have been pro-
vided by two reports (Fazzini et al., 2006; Fazzini, 2007)
published in the official information magazine of the Inter-
regional Association for the Coordination and Documenta-
tion of Snow and Avalanche Problems (https://aineva.it/en/
neve-e-valanghe-magazine/, last access: 16 January 2024).
More specifically, Fazzini et al. (2006) analysed the 1982–
2004 period, finding, for the Apennines area, a marked spa-
tial heterogeneity in HN, SCD, and NDS trends. From this
study, in fact, emerged a strong positive tendency for the in-
vestigated variables in the northern Apennines (eastern sec-
tor), a negligible trend in central Apennines, and local pos-
itive tendencies in the southern sector. Fazzini (2007) has
obtained a similar result for the number of days with HN
> 5 cm.

The peripheral attention dedicated to the Apennines can
be mainly attributed to the very fragmented management of
the meteorological monitoring network, which resulted in a
non-uniform spatial and temporal coverage of snow data.

Historically, snow monitoring in the Apennines areas
has been handled by the Italian National Hydrological and
Mareographic Service (hereafter NHMS). This service man-
aged the hydro-meteorological data collection in Italy from
1917 to 2002 and was structured into 14 different com-
partments (Parma, Venice, Genoa, Bologna, Pisa, Rome,
Pescara, Naples, Bari, Catanzaro, Palermo, Cagliari, Trento,
and Bolzano), defined based on the water catchment areas of
the main Italian rivers. The NHMS snow dataset is currently
not available in an easily accessible and digitised format, and
therefore, it has been largely unexploited so far.

After the disposal of NHMS, whose competencies were
transferred to the local regional agencies according to the
new legislative decree issued by the Italian government,
many historical stations were dismissed or relocated. Un-
fortunately, the monitoring of snow precipitation was in-
terrupted, except in a few areas, mainly in the Emilia-
Romagna and Abruzzo regions, where automatic nivomet-
ric stations have been progressively installed (Tecilla, 2007).
Additional contributions to snow monitoring in the Apennine
regions came from the Meteomont service, which is man-
aged by the Carabinieri (Italian military corps), and from
the Meteorological Service of the Italian Air Force (here-
after MSIAF). The Meteomont network started in the 1980s
for avalanche danger assessment on a synoptic/regional
scale and actually consists, for the Apennines, of 84 man-
ual stations and 2 high-altitude surveys (https://meteomont.
carabinieri.it/stazioni-manuali?lang=en, last access: 4 Jan-
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uary 2024; Meteomont, 2024a). The data collected by such
stations are publicly available in a digitised format through
the Meteomont website (https://meteomont.carabinieri.it/
archivio-condizioni-meteonivologiche?lang=en, last access:
4 January 2024; Meteomont, 2024b). However, most of the
time series are strongly incomplete, and therefore, their use
for climatological purposes is challenging or prohibitive. The
MSIAF snow measurements have been available since 1981
for 80 monitoring sites and consist of daily observations of
HS and of 3-hourly measurements of the snow water equiv-
alent (Fazzini et al., 2006). The entire Apennines region is
monitored by the MSIAF network through 15 stations, hav-
ing an altitude between 352 and 2165 m above sea level
(hereafter a.s.l.). However, such data are not publicly accessi-
ble and, more importantly, are strongly unevenly distributed
in space and altitude, so they are not suitable for a reliable
climatological characterisation of the Apennines region.

In light of this situation, a relevant lack of research ex-
ists in the knowledge of past snow variability in the Apen-
nines. This works aims to provide a contribution to fill this
gap through the rescue of 281 historical time series of snow
data collected by the NHMS network in an area including a
large part of the central Apennines and a small sector of the
southern Apennines. After careful quality control, a complete
and high-quality dataset consisting of 110 and 114 monthly
time series of SCD and NDS, respectively, collected during
the period 1951–2001, and of 120 monthly time series of HN
measured in the 1971–2001 period has been obtained. This
dataset has been adopted to accomplish the two main goals
of this study:

– Building up an updated and solid reference climatology
for SCD, NDS, and HN variables (related to 1971–2000
period) for the considered Apennine region.

– Providing new evidence about long-term tendencies in
NDS and SCD for the study area and analysing their
relationship with the elevation.

The remainder of the paper is organised as follows: Sect. 2
describes the study area, the data, and the methods; Sect. 3
presents the results; and Sect. 4 is dedicated to the discussion.
Finally, Sect. 5 provides the conclusions.

2 Materials and methods

2.1 Study area

The Apennines Mountains consist of parallel mountain
ranges extending for about 1200 km from northwest to south-
east along the length of the Italian Peninsula. They are
conventionally subdivided into three different sectors: the
northern sector, including the Ligurian and the Tuscan–
Emilian Apennines; the central sector, encompassing the
Umbria–Marche Apennines and the Abruzzi Apennines; and

the southern sector, comprising the Samnite and Campa-
nian Apennines, the Lucan Apennines, and the Calabria and
Sicily Apennines. In this study, we focused on a study re-
gion embracing a large portion of the central Apennines
and a small sector of the southern ones (Fig. 1). This area
extends from 40.5 to 43.5° N latitude and from 12.5 to
16.0° E longitude and includes the following Italian admin-
istrative regions: Umbria, Lazio, Abruzzo, Molise, Campa-
nia, Puglia (Apulia), and Basilicata. It has a very complex
orography consisting of several mountain ranges. The main
orographic features, highlighted by filled-in brown triangles
in Fig. 1, are (from north to south) the Sibillini Moun-
tains (2476 m a.s.l.), the Laga Mountains (2458 m a.s.l.),
the Reatini Mountains (2217 m a.s.l.), the Gran Sasso area
(2912 m a.s.l.), the Sirente–Velino mountains (2487 m a.s.l.),
the Maiella massif (2793 m a.s.l.), the Marsicani Mountains
(2285 m a.s.l.), the Matese massif (2050 m a.s.l.), the Parte-
nio (1598 m a.s.l.), the Picentini mountains (1809 m a.s.l.),
and the Vulture–Li Foj area (1365 m a.s.l.). Moreover,
the study area also includes several Apennine offshoots,
marked as filled-in yellow triangles in Fig. 1, such as the
Lazio sub-Apennines (2063 m a.s.l.), the Daunian Mountains
(1132 m a.s.l.), the Gargano massif (1065 m a.s.l.), and the
Murge plateau (686 m a.s.l.). The study region is bounded by
flat areas which gradually slope down to the Tyrrhenian Sea
(to the west) and to the Adriatic Sea (to the east).

The climate of this area presents distinct Mediterranean
features, with a precipitation maximum between late autumn
and midwinter and a relevant minimum in midsummer. Ac-
cording to Crespi et al. (2018), the spatial distribution of
the accumulated precipitation is strongly conditioned by the
orography of the region and exhibits a marked west-to-east
gradient, with drier conditions along the Adriatic sector. It is
interesting to highlight that, on average, the highest annual
precipitation amounts (up to 2200–2500 mm) are observed
in the massifs of the southern Apennines, i.e. in the Matese,
Partenio, and Picentini areas. Although they have a lower al-
titude than the mountains of the central Apennines, such re-
liefs lie in a relatively less complex orographic context, and
therefore, they receive precipitation from a wide spectrum of
synoptic patterns (Capozzi et al., 2022).

Regarding snow precipitation, the only climatological ref-
erence is the old study of Gazzolo and Pinna (1973). This
work provided a coarse climatology for the HN, SCD, and
NDS parameters for the whole Italian Peninsula, using the
data collected by NHMS during the 1921–1960 period. Ac-
cording to Gazzolo and Pinna (1973), the major peaks of the
central Apennines (Gran Sasso, Sibillini, and Laga moun-
tains and Maiella) received, in the considered time interval,
up to 400 cm of fresh snow per year. In the mountainous areas
of the southern sector (Matese, Partenio, and Picentini), the
average total yearly HN is slightly above 200 cm. In contrast
to what is generally observed for the total precipitation, the
snowfall amounts observed in the eastern slopes of the cen-
tral Apennines and in the adjacent flat and coastal areas are
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Figure 1. In the left panel is a map of the Mediterranean area, including the study region (highlighted as a solid-black-outlined box) is
presented. The right panel shows a digital elevation model of the investigated area, with several mountain ranges mentioned in the main text.
More specifically, the main Apennine reliefs are marked as filled-in brown triangles, whereas the filled-in yellow triangles indicate several
Apennine offshoots. The black line shows the boundaries of the Italian administrative regions included in the study area (the official names
of the regions are indicated in orange). Images credit: © Google Earth, Data SIO (Scripps Institution of Oceanography), NOAA, U.S. Navy,
NGA (National Geospatial-Intelligence Agency), and GEBCO (General Bathymetric Chart of the Oceans).

higher than those measured in the western sectors. This can
be related to the effects of the cold continental air masses
coming from the Balkan region and eastern Europe, which
stimulate abundant snowfall precipitation through two main
mechanisms, namely the vertical transport of moisture and
heat connected to their passage over the Adriatic Sea and the
orographic forcing, which is related to their interaction with
the mountain ranges. Regarding the SCD, the yearly clima-
tological value is between 50 and 100 d (or greater) in the
main reliefs of the central Apennines, whereas it is generally
below 50 d in the southern massifs. The frequency of occur-
rence of snowfall events is very high (25–50 d) in the central
sector, while, according to Gazzolo and Pinna (1973), it is
lower than 20 d in the southern areas.

The mean annual temperature exhibits a strong altitudinal
gradient, decreasing from 16-17 °C at the coastal areas and
13-14 °C at the base of the Apennines to, finally, 2-4 °C at
the highest peaks of the central sector (Curci et al., 2021). As
perfectly testified by the climatology presented in Brunetti
et al. (2014), the valleys and the sub-mountain areas of the
Abruzzo region have a mean annual temperature lower than
the most of hilly regions of Campania, Puglia, and Molise.
This difference is mainly due to the minimum temperature

(Curci et al., 2021) and can be ascribed to the frequent oc-
currence, in the Abruzzo valleys, of the thermal inversion
phenomenon.

2.2 Data rescue

In this study, we have exploited the database of the follow-
ing four NHMS compartments: Naples, Bari, Rome, and
Pescara. The data collected by the stations belonging to the
NHMS network were published in the Hydrological Year-
books, which are freely accessible in a printed version (i.e. as
scanned images in portable document format) through the
Italian Institute for Environmental Protection and Research
(ISPRA) website (http://www.bio.isprambiente.it/annalipdf/,
last access: 9 January 2024). The editing and publishing
of the Hydrological Yearbooks were handled by the De-
partmental Office of the NHMS responsible for a specific
compartment. Each Hydrological Yearbook contains the
data collected in a certain year and is generally structured
in two different parts. Part I includes the thermometric
and pluviometric measurements, and the Part II contains a
wide spectrum of data related to precipitation, hydrology,
groundwater levels, exceptional events, and tide mea-
surements (https://www.isprambiente.gov.it/en/projects/
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inland-waters-and-marine-waters/hydrological-yearbooks,
last access: 9 January 2024). The snow data are included in
Part II of the Hydrological Yearbooks from 1917 to 1934
and in Part I from 1935 onwards.

More specifically, the snow data are reported for the Oc-
tober to May period and consist of the following parameters:
SCD, NDS, HS, and HN. From 1917 to 1934, the available
measurements include the daily HN, the corresponding snow
water equivalent amount, the monthly NDS value, and the HS
value before the occurrence of a determined snowfall event.
Subsequently, the snow data are reported in a different for-
mat. Regarding the SCD and NDS parameters, monthly data
are available from 1935 to 1999 for the Naples and Rome
compartments, from 1935 to 2000 for the Bari compartment,
and from 1935 to 2013 for the Pescara compartment. The
temporal coverage of HS data resembles the one of SCD and
NDS; however, it should be highlighted that for this param-
eter only, three daily observations per month (at the end of
each decade) are available from 1935 to 1971 and only one
(in the last day of a determined month) in the subsequent
periods. Concerning the HN variable, unfortunately, no data
are available from 1935 to 1970, whereas monthly observa-
tions are reported from 1971. The snow measurements have
been manually performed using a traditional nivometer con-
sisting of a snowboard and a graduated yardstick (De Bellis
et al., 2010). It is important to highlight that according to the
NHMS standard, the monitored snow parameters are defined
as follows:

– SCD is the total number of days in a given month or in
a given season with snow depth on the ground ≥ 1 cm.

– NDS is the total number of days in a given month or
in a given season on which the accumulated snowfall
(i.e. the amount of fresh snow with respect to the previ-
ous observations) is at least 1 cm.

– HN is the daily or monthly amount of fresh snow (ex-
pressed in cm). The monthly value is intended as the
sum of daily HN data observed in a determined month.

– HS is the daily snow depth on the ground (expressed in
cm).

From 1917 to the end of the 1940s, the data availability is
limited and is strongly conditioned by the period of the First
and Second World Wars (in which many stations temporarily
interrupted their monitoring activity). The number of stations
reporting snow data increased in the early 1950s, and it was
fairly stable until the end of the 1990s, except for some iso-
lated drops (in 1989 and 1997). Subsequently, after the clo-
sure of NHMS, the data availability strongly decreased and
was restricted to some stations of the Abruzzo region, which
continued to collect snow data under the management of lo-
cal regional authorities, and to the Montevergine Observatory
station (southern Apennines), which autonomously contin-

ued the meteorological parameter recording (Capozzi et al.,
2020).

In this study, we decided to consider the 1951–2001 pe-
riod, which corresponds to the years with the highest number
of data points. More specifically, we have digitised the SCD,
NDS, HN, and HS data collected by stations having an ele-
vation greater than 250 m a.s.l. In other words, we have ex-
cluded the stations located in flat areas or along the coasts,
where the occurrence of snow is relatively rare. Using this
criterion, we have retrieved 281 stations with elevations rang-
ing between 288 and 2125 m a.s.l. Note that for the digitisa-
tion process, we have used a simple “key entry” method. De-
spite the recent introduction of new approaches and method-
ologies based on optical character recognition software and
machine learning tools, manual transcription is still the most
accurate technique for climate data digitisation. As shown by
Brönnimann et al. (2006), the manual method has a lower er-
ror rate and fits the recommendations and the standards prac-
tises of the World Meteorological Organization well (World
Meteorological Organization, 2016), although it is slower in
terms of the amount of rescued data per unit of time. The dig-
ital templates have been developed in Microsoft Excel and
have been structured into different spreadsheets, with one
dedicated to the station metadata and the other one to the
data of the available snow parameters.

A complete list of all rescued stations, with details about
geographical coordinates (latitude, longitude, and height
a.s.l.), the NHMS compartment to which a determined sta-
tion belongs, and the percentage of available data, is provided
in the Supplement (Table S1).

2.3 Data, quality control, and homogenisation

In this work, we have analysed the SCD and NDS data col-
lected in the 1951–2001 period and the HN data measured
between 1971 and 2001. We have decided not to consider
the HS data as these have been reported in the Hydrologi-
cal Yearbooks with a format consisting of three or one daily
observations per month, which is not suitable for a reliable
climatological analysis.

Figure 2 presents the histograms of the data availability
for three considered parameters, namely SCD (Fig. 2a), NDS
(Fig. 2b), and HN (Fig. 2c). The data availability has a clear
bimodal distribution, with two distinct peaks, namely one be-
tween 0 % and 10 % and the other between 85 % and 100 %.
From a simple visual inspection of Fig. 2, it emerges that
a non-negligible fraction of the rescued stations has limited
data availability. For SCD and NDS (HN), 39 % (37 %) of
the measuring stations have a data availability of less than
50 %. According to the criteria suggested by the World Me-
teorological Organization (World Meteorological Organiza-
tion, 2008), we have discarded the stations with less than
80 % of the available data in the observation period. More-
over, we have rejected some stations belonging to the Rome
compartment, namely Abeto, Castelluccio di Norcia, Monte
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Figure 2. Histogram of the data availability (in %) for the considered snowfall parameters. SCD (a), NDS (b), and HN (c). Note that in this
figure all rescued stations have been considered.

Figure 3. Panel (a) shows the location of the stations (129 in total) considered for the analyses carried out in this work. The black line shows
the boundaries of the Italian administrative regions included in the study area. Panel (b) shows the number of available stations per elevation.

Terminillo (only for SCD and NDS), and Bagnara (only
for SCD), due to the presence of many suspicious records.
This screening yielded a subset consisting of 129 stations for
which the positions are shown in Fig. 3a. The spatial distribu-
tion of the stations is quite uniform over the entire region, ex-
cept for the northern side (Umbria–Marche Apennines); for
this area, there are only four stations located at an altitude
ranging between 529 and 750 m a.s.l. The density of the sta-
tions is particularly high in the proximity of the main moun-
tain ridges of Abruzzi and Samnite Apennines. In the south-

ern sectors, only one station (Montevergine Observatory) is
located above 1000 m a.s.l. Regarding the elevation distribu-
tion, which is shown in Fig. 3b, a relevant number of stations
(69) is between 600 and 900 m a.s.l., 27 stations are below
600 m a.s.l., and the remaining (33) are above 900 m a.s.l.;
the elevation ranges from a minimum of 288 m to a maxi-
mum of 1750 m a.s.l.

The considered dataset has been subjected to an accurate
quality control (hereafter QC). It is widely known, in fact,
that the quality assurance of climate data is crucial to im-
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prove confidence in any further analysis. As pointed out in
many papers, the reliability and the consistency of a histori-
cal climatological time series can be affected by several arte-
facts and errors and caused by instrument failures, human
mistakes in data collection, and inaccuracies in the digitisa-
tion of paper-based data. In this study, we have developed a
QC strategy consisting of three statistical tests:

– the gross error test, which flags the data that are above
or below acceptable physical limits;

– the consistency test, which involves an inter-variable
check; and

– the tolerance test, which is focused on outlier detection.

Note that this QC strategy has been applied to the monthly
SCD and NDS time series available in the 1951–2001 period
and to the monthly HN time series available in the 1971–
2001 time segment.

The gross error test aims to identify the clearly erroneous
values and consists of comparing the monthly SCD, NDS,
and HN values to their physical limits. For SCD, we have
checked for cases in which, for a determined month and for a
certain station, the number of days with snow on the ground
is greater than the number of days in that month (e.g. SCD
is 32 d in January). For NDS, we have applied a very sim-
ilar criterion, flagging the circumstances in which the NDS
value is equal to or greater than the number of days in a de-
termined month as “gross errors”. According to this criterion,
the instance in which a new snowfall event occurred on ev-
ery day of a certain month is considered an implausible situ-
ation. For monthly HN values, we have considered the limit
(500 cm) recommended by World Meteorological Organiza-
tion (2008).

The second step of the QC process aims to detect inconsis-
tencies between the pairs of the investigated variables. More
specifically, the purpose of this test is to detect the following
instances: (i) the NDS value for a determined month and a
certain station is greater than the SCD value; (ii) the NDS
value for a determined month and a certain station is zero,
and the HN value is greater than zero; (iii) the NDS value for
a certain month and a determined station is greater than zero,
and the NH value is null. By applying the gross test and the
consistency checks, 1527 monthly invalid data points were
found; in particular, 2.0 % of the erroneous data emerged
from the gross test, whereas the remaining 98.0 % represent
the outcome of the consistency test. A relevant fraction of
the bad data can be attributed to instances in which the NDS
value is greater than the SCD value. In some Hydrological
Yearbooks, in fact, the NDS value is reported in the column
dedicated to the SCD value, and vice versa. Therefore, in
most of the cases, the identified errors have been easily cor-
rected; in other circumstances, they have been discarded and
replaced with a missing data marker.

The tolerance test has been performed using the Climatol
method. The latter has been developed by Guijarro (2018)

and is widely employed for the QC, homogenisation, and
filling the missing data for a set of climatological time se-
ries. The Climatol data processing starts with a normalisation
of the original data. In this respect, Climatol offers different
approaches for normalisation, depending on the climatologi-
cal variable. In this study, the type of normalisation (std) has
been set to 1 (which means that data normalisation is based
on deviations from the mean) for SCD and NDS, whereas
we selected std= 2 (which means normalising using the ra-
tio to normal climatological value) for HN. The approach
used by Climatol to detect outliers is inspired by the prin-
ciples of the spatial consistency check. In particular, for any
candidate time series, this method uses data from neighbour-
ing stations to estimate a corresponding reference series as
a weighted average, employing a geographic proximity cri-
terion using Euclidean distances. In the default settings of
the toolbox, the vertical and horizontal distances (expressed
in metres and kilometres, respectively) between a suitable
neighbouring station and the candidate one have the same
weight. Following Buchmann et al. (2022) and taking into
consideration the influence of altitude on the snow, in this
study we have adjusted the scale parameter of the vertical
coordinate (wz) so that the elevation counts 100 times more;
in other words, the approach used in our work means that
an altitude difference of 500 m corresponds to a horizontal
distance of 50 km. The estimated reference series are used
to create a time series of anomalies for their corresponding
observed series by subtracting the estimated values from the
observed ones. The values of the anomaly time series that
exceed a determined threshold (dz.max) are labelled as out-
liers, and so the correspondent data in the original series are
discarded. More specifically, the dz.max value, set by default
to ±5 standard deviations, was properly tuned to ensure that
the flagged outlying values were not rejected because of their
extremeness. After several sensitivity experiments in which
we manually inspected the data flagged as potential outliers,
the dz.max parameter has been set as follows: dz.max= 15
for SCD and NDS, and dz.max= 20 for HN. Using this cri-
terion, the tolerance test flagged as outliers only two NDS
monthly observations related to the Frigento and Roccasicura
time series.

Climatol has been employed in this study to also check
the homogeneity of the investigated time series. The use of
this toolbox for the homogenisation of snow data has been
explored, with encouraging results, in some recent works
(Buchmann et al., 2022, 2023). As described in detail by
Guijarro (2018) and by Kuya et al. (2022), the Climatol ho-
mogenisation method is based on the standard normal homo-
geneity test (SNHT; Alexandersson, 1986) for the identifi-
cation of the breaks and on a linear regression approach for
the adjustments (Easterling and Peterson, 1995). The SNHT
falls within homogenisation procedures that are able to iden-
tify an inhomogeneity without knowing a priori the time of
the break point in the time series and that can also estimate
the magnitude of the detected break. The basic idea underly-
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ing this method consists of using neighbouring stations as a
reference to identify the inhomogeneities in the station being
tested (the candidate station). Such an assumption requires
the existence of a sufficient correlation level between the
test and reference stations. More specifically, SNHT uses a
normalised series of the ratios/differences (hereafter Q) be-
tween, e.g., precipitation/temperature at the candidate station
and the neighbouring reference stations. The test is based on
the null hypothesis that the Q series has a constant mean
level, i.e. that the candidate series is homogeneous, and the
alternative hypothesis that the mean level of the Q series
changes abruptly from one level to another at some time.
For each point of the time series, a test value, based on a
comparison between the means of the two subsamples before
and after the potential breakpoint, is computed as described
in detail in Alexandersson and Moberg (1997). The null hy-
pothesis is rejected if the maximum test value of all divid-
ing points in the Q series is greater than a predefined criti-
cal level. In Climatol, the SNHT is applied to the anomaly
time series previously introduced in the description of the
tolerance test. In brief, the Climatol homogenisation process
is structured in two procedures, namely the application of
the SNHT on stepped overlapping temporal windows and on
the whole series. In the first one, called “stepped overlapping
windows”, the toolbox computes the SNHT test for all series,
retaining the maximum SNHT value for each series. The se-
ries having a maximum SNHT value greater than a specific
threshold (snht1) are split into two subseries at the point of
the maximum SNHT value. Subsequently, the sub-series are
tested again, and the procedure is iterated until the maximum
SNHT value of the sub-series is below the snht1 threshold.
After this procedure, the test is applied to the whole series in
order to detect further breaks, using a threshold value snht2.
Once a break for a determined candidate time series is de-
tected, the latter is corrected back in time, starting from the
most recent homogeneous time interval. The break magni-
tude corrections are computed as the variation in the mean
before and after the homogenisation procedure. More specif-
ically, given a time series Y , the correction factor (CF) is
calculated as follows:

CF=
σQYb+Qm

σQYa+Qm
, (1)

where Yb and Ya are the mean values between the beginning
of the measurements of Y and the break point (before) and
from the break point to the end (after), respectively. Q is the
non-standardised ratio time series, defined as the ratio be-
tween the reference and candidate, and σQ and Qm are the
standard deviation and mean of Q, respectively. Additional
details about the calculation of the adjustment factor can be
found in Guijarro (2018), Kuya et al. (2022), and Buchmann
et al. (2023). The last step of Climatol processing consists of
the filling of all missing values using the weighted ratios of
neighbouring series and in the production of the final high-
quality homogeneous and complete time series. It is impor-

tant to highlight that Climatol offers the opportunity to carry
out a first explanatory analysis of the data, which is very use-
ful for the tuning of several parameters, including snht1 and
snht2. The main settings adopted to run Climatol for toler-
ance test of QC and homogenisation are listed in Table 1.

Using this set-up, Climatol flagged seven SCD and two
NDS time series as inhomogeneous. Details about the dates
on which the breaks occurred and the corresponding value
of SNHT are supplied in the Supplement (Table S2). From a
visual inspection of such a time series, the results of the ho-
mogeneity test seemed very reasonable. The identified breaks
were further examined against the metadata reported on the
Hydrological Yearbooks. However, the latter contain only
some useful information that allowed us to verify only if the
stations were relocated (this is not the case for any of the
stations identified as inhomogeneous). We therefore do not
have enough information to determine the cause of the inho-
mogeneities. We decided to adopt a precautionary approach
and, therefore, the detected breaks were accepted.

2.4 Cluster analysis

In order to build up a reference climatology for the three pa-
rameters investigated in this study, the SCD, NDS, and HN
time series have been grouped into different clusters, each
representing a specific climatic zone. Following the previous
literature, we used a multivariate method based on the prin-
cipal component analysis (PCA) and cluster analysis (CA).
This approach has been employed in different areas (Kidson,
1994; Sumner et al., 1995; Fragoso and Tildes Gomes, 2008;
Capozzi et al., 2023), proving to be reliable in the classifica-
tion of meteorological data.

To search for dominant spatial patterns, the (non-rotated)
PCA has been applied in T mode to a dataset consisting
of n “observations” (i.e. the stations; 110 for SCD, 114 for
NDS, and 120 for HN) and m “variables” (i.e. the monthly
data; 612 for SCD and NDS and 372 for HN). It is impor-
tant to highlight that the PCA has been employed not as
a merely data reduction technique but as a method which
guarantees that only the fundamental modes of variation in
the data are taken into account. Using the scree plot, we
have determined the appropriate number of principal com-
ponents (PCs) for each of the three investigated parameters.
After this pre-processing, the well-known non-hierarchical
k-means method (Anderberg, 1973) was then performed us-
ing the selected PC scores as input. In the selection of the
optimal number of clusters, we searched for the best trade-
off between subjective evaluation, based on the patterns ex-
pected from the climatic and topographic drivers, and the
semi-objective metrics (“elbow method”).

2.5 Statistical analyses

In order to evaluate the magnitude of the trend slope in
SCD and NDS time series, the well-known Theil–Sen non-
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Table 1. Main settings used to run Climatol (Guijarro, 2018) for quality control and homogenisation of the investigated SCD, NDS, and HN
time series.

Parameter SCD NDS HN Description

std 1 1 2 Type of data normalisation: 1= deviation from the mean; 2= ratios to the mean
wz 0.1 0.1 0.1 Scale parameter of the vertical coordinate
dz.max 15 15 20 Threshold of outlier tolerance in the standard deviation
snht1 25 32 30 Detection thresholds of changes in the mean of the series (determined by the explanatory analysis)
snht2 40 40 40

parametric test was employed (Sen, 1968). This procedure
is largely used in the hydro-meteorological framework be-
cause of its robustness in the presence of outliers in the series
(Song et al., 2015; Bartolomeu et al., 2016; Ortiz-Gómez et
al., 2020). To assess the trend magnitude, the Theil–Sen pro-
cedure estimates the trend slope in a determined sample for
all data pairs. The median of all samples computed for each
data pair coincides with the steepness of the trend. On the
other hand, the statistical significance was assessed with the
Mann–Kendall non-parametric test (Mann, 1945; Kendall,
1962). This test is a rank-based method for assessing the
presence of increasing or decreasing monotonic trends in
time series data, and it is often used because of its property of
requiring minimal assumptions about the data that need to be
tested (Hamed, 2008). The significance levels of 0.05 and 0.1
(i.e. the 95 % and 90 % confidence levels, respectively) have
been used to test the null hypothesis that there is no trend in
the data. It is important to highlight that prior to the appli-
cation of these statistical tests, the pre-whitening technique
was used to reduce the effect of lag-one autocorrelation in
the analysed time series (e.g. Caloiero et al., 2011; Tramblay
et al., 2013).

In addition, to measure the relationship between the linear
trend of the analysed parameters and the elevation, we em-
ployed the traditional Pearson correlation coefficient (here-
after ρ).

2.6 Wavelet analysis

The wavelet analysis is a very appealing alternative to the
classic short-time Fourier transform for the geophysical time
series analysis and periodicities examination. The Wavelet
tool, in fact, allows discriminating not only the main frequen-
cies in a non-stationary series but also localising them in time
(Percival, 2008). This is a very useful feature for the analy-
sis of climate data, whose variability is typically modulated
by nonstationary processes. Because of such remarkable ad-
vantages, we have decided to apply the wavelet transform
(WT) to the clustered–averaged SCD and NDS time series
involved in this study to identify their oscillation in the fre-
quency domain. Among the main WT categories (Grinsted
et al., 2004), we have chosen the continuous wavelet trans-
form (CWT), which is particularly suitable for the analysis
of scale- and time-dependent features of a time series. The

CWT searches for a similarity between the investigated sig-
nals and a well-known mathematical function (the wavelet).
The latter is applied several times with different scales to the
considered time series and at different temporal locations.
Similar to other studies (e.g. Carey et al., 2013; Marcolini et
al., 2017b), we have decided to apply the Morlet function as
the Wavelet function. Additional details about the mathemat-
ical formulation of this function, as well as about the wavelet
analysis, and the methods used to assess the statistical sig-
nificance of the power spectrum can be found in Grinsted et
al. (2004). It is important to highlight that the CWT presents
some deficiencies at the edges of the investigated time series.
Therefore, it is useful to introduce a cone of influence, where
the results are uncertain (Torrence and Compo, 1998). The
CWTs of two signals can be combined to obtain the cross-
wavelet transform (XWT), which offers the possibility of de-
tecting the areas, in the time–frequency domain, where the
two CWTs share common features in terms of power and
relative phase (for mathematical details, see Grinsted et al.,
2004).

3 Results

3.1 Regionalisation

The PCA of monthly SCD, NDS, and HN time series allowed
the extraction of the essential modes of spatial variability.
A detailed description of the principal component analysis
(PCA) results for each of the three investigated variables is
offered in Appendix A. According to the evidence provided
by the scree plot, we have considered the first four PCs for
SCD (which account for 73 % of the total variance), the first
nine PCs for the NDS (which explain 70 % of the total vari-
ance), and the first four for the HN (which account for 70 %
of the total variance). Such levels of explained variance seem
to be acceptable, given the considerable number of stations
and the complex nature of the snow variables. It is interest-
ing to highlight that, in all three cases, the first PC explains
most of the variance (61.2 % for SCD, 51.8 % for HN, and
47.7 % for NDS). From the analysis of PC scores, which
can be regarded as standardised spatial patterns, it clearly
emerges that the first PC reflects the altitude-related variabil-
ity in the three snow indicators across the whole elevation
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range (see Figs. A2, A4, and A7 in Appendix A). The other
considered PCs explain a very limited portion of variance
(generally ranging between 1 and 8 %) and might be linked
with several factors, such as the difference between the east-
ern and western sides of the Apennines, the distance from
the sea, and the hours of direct sunlight, as well as with local
patterns strongly conditioned by the orography.

The PCA scores from the selected PCs were employed
as input for the k-means algorithm. After several tests and
sensitivity analyses to assess the cluster reproducibility and
stability, four clusters were chosen for SCD and NDS and
three for HN. The clustering of the available stations based
on monthly SCD, NDS, and HN data are presented in Fig. 4.
From a visual inspection of this figure, as well as of Table 2,
it is straightforward to notice that the clusters are relatively
well separated in altitude. Starting from SCD (Fig. 4a), the
identified groups are populated by a number of stations that is
inversely proportional to the median elevation. More specif-
ically, as revealed by Table 2, cluster 1 comprises 58 sta-
tions and has a median altitude of 648 m a.s.l. (min–max:
288–910 m a.s.l.), cluster 2 counts 26 stations with a me-
dian elevation of 815 m a.s.l. (min–max: 550–954 m a.s.l.),
and cluster 3 includes 14 stations and has a median eleva-
tion of 1000 m a.s.l. (min–max: 750–1157 m a.s.l.). Finally,
cluster 4 includes 12 stations with an altitude greater than
or equal to 1000 m a.s.l. (median value: 1290 m a.s.l.). The
altitudinal range of the stations is around 400 m for all clus-
ters, except cluster 1. The latter, in fact, includes not only
low-elevation sites but also stations located on the eastern
and southern mountain slopes of the central Apennines chain,
which are located in topographic contexts unfavourable to the
persistence of snow on the ground due to the high number of
hours of direct sunlight.

The four groups that emerged from the clustering of NDS
data are shown in Fig. 4b. According to Table 2, most of the
stations are nearly equally distributed among the first three
clusters (31 belong to cluster 1, 34 to cluster 2, and 35 to clus-
ter 3). Cluster 1 includes low-elevation sites (median altitude
569 m a.s.l.; min–max: 288–850 m a.s.l.) and stations located
in the main valleys of Abruzzo region. The second cluster has
a slightly higher median elevation (700 m a.s.l.; min–max:
520–910 m a.s.l.) and brings together a relevant number of
hilly sites of the southern and Samnite Apennines, as well as
several stations located on the eastern side of Maiella moun-
tains. The stations belonging to the third cluster span a sig-
nificant altitudinal range (from 650 to 1375 m a.s.l.) and have
a median elevation of 879 m a.s.l. The fourth cluster is very
similar to the SCD cluster 4; it includes, in fact, only high-
elevation sites having a median elevation of 1220 m a.s.l.
(min–max: 1000–1430 m a.s.l.).

The clustering of HN data yielded three regions (Fig. 4c);
the first one (cluster 1) includes 52 stations with a median el-
evation of 603 m a.s.l. (min–max: 288–948 m a.s.l.). The sec-
ond one (cluster 2) comprises 45 sites with a median alti-
tude of 829 m a.s.l. (min–max: 625–1137 m a.s.l.), whereas

cluster 3 includes 23 sites, all located in the central Apen-
nines (except one, Montevergine Observatory, which is sit-
uated in the southern sector), with a median elevation of
1210 m a.s.l. (min–max: 800–1750 m a.s.l.). This classifica-
tion is clearly conditioned not only by altitude but also by
local climatic and topographic factors, which may generate
large differences in the snowfall amount among stations lo-
cated at similar altitudes. Most of the stations belonging to
cluster 4 are located in the proximity of the Maiella and Mar-
sicani mountains, where the orographic forcing and low-level
wind convergence lines are able to strongly enhance the snow
precipitation.

3.2 Climatology for the 1971–2000 period

Starting from the clustering results, we have built up refer-
ence climatology for different snow seasons, namely early
season (from November to January), winter season (from De-
cember to February), late season (from February to April),
and full season (from November to April). This seasonal par-
tition is similar to that generally adopted in previous studies
(e.g. Matiu et al., 2021), with some small adjustments, de-
pending on the climatic features of the study area and on the
elevation range of the available stations. Figure 5 presents
the climatology 1971–2000 for the SCD parameter. More
specifically, for each of the four seasons previously intro-
duced, the altitudinal distribution of the average SCD (ex-
pressed in a number of days) is shown. Each point repre-
sents one station and is colour-coded according to the mem-
bership cluster (note that we follow the same colour-coding
adopted in Fig. 4). In addition, on each panel, the cluster-
averaged values and the associated spatial standard deviation
are also reported. As expected, there is a clear altitudinal gra-
dient that grows as the elevation increases. In the full sea-
son, the SCD average rises by ≈ 9 d from cluster 1 (which
presents a climatological value of 12.9 (±3.8) d) to cluster 2
(22.0 (±3.0) d) and by≈ 11 d from cluster 2 to cluster 3 (33.4
(±4.6) d), whereas the difference among cluster 3 and clus-
ter 4 (59.4 (±12.1) d) is steeper (it is 26 d). The relationship
between the average SCD and elevation is efficiently mod-
elled by a power fit, as testified by the coefficient of determi-
nation (R2), which ranges between 0.72 (early season) and
0.78 (late season). Note that the power curve function ob-
tained for a determined season is shown on the corresponding
panel as a solid black line, assuming that the average snow
cover duration is the dependent variable (SCD) and the ele-
vation the independent one (z). It is interesting to highlight
that the differences among clusters reduce in the early sea-
son, whereas they are larger in the winter season. In addition,
it is worth noting that in cluster 4 the distribution becomes
more dispersed, as testified by the standard deviation values.
The spatial distribution of the average seasonal SCD over the
study area is shown in Fig. B1 in Appendix B. In all seasons,
the highest-average SCD value has been found in Camposto
(1430 m a.s.l.), which is located on a plateau east of the Laga
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Figure 4. Clustering of stations based on monthly data of SCD (a), NDS (b), and HN (c). The stations are colour-coded according to the
cluster memberships.

Table 2. For each of the investigated snow indicators (SCD, NDS, and HN), the number of stations belonging to a determined cluster and the
stations’ median and range elevation (minimum–maximum) are shown.

Cluster Number of stations Elevation (m a.s.l.)

SCD NDS HN SCD NDS HN

1 58 31 52 648 (288–910) 569 (288–850) 603 (288–948)
2 26 34 45 815 (550–954) 700 (520–910) 829 (625–1137)
3 14 35 23 1000 (750–1157) 879 (650–1375) 1210 (800–1750)
4 12 14 / 1290 (1000–1430) 1220 (1000–1430) /

Mountains. In this site, the local topographic conditions are
particularly favourable to the persistence of the snow on the
ground.

The climatology for NDS is presented in Fig. 6. The av-
erage NDS values found for the available stations spread
over the considered altitudinal range and follow, also in this
case, a distribution well captured by a power law function
(R2
= 0.78 for all seasons). This behaviour suggests the ex-

istence of an altitudinal gradient, which, similar to what has
been discovered for SCD, rises with increasing elevation.
The cluster-averaged climatological NDS values (shown for
each season on the corresponding panel) provide confirma-
tion in this regard; in the full season, the average NDS is

5.2 (±0.7) d for cluster 1, 7.8 (±1.3) d for cluster 2, 11.2
(±1.9) d for cluster 3, and 20.0 (±5.4) d for cluster 4. Above
800 m a.s.l., there is a clear increase in the spatial variabil-
ity, which maximises within cluster 4 in all seasons. The
difference between clusters does not exhibit a relevant sea-
sonal dependence, although in winter a slight increment of
the gap in average NDS value between clusters 1 and 2 and
between clusters 3 and 4 has been detected. It is worth point-
ing out that, in the full and late seasons, the highest climato-
logical NDS value has been observed in the southern Apen-
nines (Fig. B2), more precisely in Montevergine Observatory
(1280 m a.s.l.). This result is only apparently surprising. As
briefly discussed in Sect. 2.1, the southern Apennines massifs
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Figure 5. Climatology of snow cover duration (SCD) for (a) full, (b) early, (c) winter, and (d) late seasons. Average values are for the period
1971–2000. Each point represents a station that is colour-coded according to the membership cluster. The solid black line represents the
power fit. The text boxes show the power fit equation and the average and standard deviation values for each cluster.

included in the investigated area are well exposed to different
air masses (i.e. to both continental air masses coming from
Balkan regions and to maritime air masses coming from the
Atlantic), so they receive larger precipitation amounts than
the central sectors. According to the results of our study, this
aspect also reflects on the frequency of occurrence of snow-
fall events, which, on the Partenio massif, is larger than many
mountainous sites of the central Apennines located at the
same altitude or slightly above, as demonstrated by Fig. B2.

The HN climatology is presented in Fig. 7. As for SCD
and NDS, the analysed region exhibits a pronounced variabil-
ity, mainly driven by the elevation, with a minimum, in the
full season, of 24 cm in Lanciano (288 m a.s.l.) and a max-
imum of 335 cm in Monte Terminillo station (1750 m a.s.l.)
in the Reatini Mountains. According to the scatter diagrams
of Fig. 7, there is a clear separation between the three groups
identified by the cluster analysis. In the full season, the cli-
matological HN value is 44.5 (±11.7) cm for cluster 1, 85.0
(±18.5) cm for cluster 2, and 204.1 (±51.9) cm for cluster 3.
The latter shows a remarkable variability, which is related not
only to the altitude but also to the incidence of orographic ef-
fects. In this respect, in the Abruzzo region, there are several
stations below 1000 m a.s.l. that received, in the considered
reference period, relevant snowfall amounts that are com-
parable to sites belonging to higher altitudinal bands. This
is the case for Nerito (800 m a.s.l.), in which the full-season

climatological HN value is 148 cm; Rosello (890 m a.s.l.), in
which the average HN value is 167 cm; and Sant’Eufemia
a Maiella (870 m a.s.l.), the most impressive case, for which
the average HN value is 268 cm (Fig. B3). In the late and win-
ter seasons, the snowfall amounts increase by ≈ 80 % from
cluster 1 to cluster 2 and by ≈ 124 % from cluster 2 to clus-
ter 3. In the late season, we have detected a steeper altitudinal
gradient instead. Cluster 2 receives, on average, more than
twice (+109.7 %) the total HN value observed for cluster 1,
whereas in cluster 3 the snowfall amounts grow by 150 %
with respect to cluster 2.

3.3 Trend analysis

The linear trend analysis has been applied to both individ-
ual SCD and NDS time series, as well as to cluster-averaged
time series. The latter have been obtained, for each of the in-
vestigated seasons, as the arithmetic mean of the values of
stations belonging to a determined cluster.

Starting from SCD, Fig. 8 shows the cluster 1 (solid yellow
line) and cluster 4 (solid blue line) time series for the 1951–
2001 period. Note that we decided not to plot the behaviour
over time for clusters 2 and 3 for ease of presentation. Ac-
cording to Sect. 3.1, cluster 1 and cluster 4 include stations
belonging to different altitudinal bands (the median eleva-
tion is 648 and 1290 m a.s.l., respectively), and, therefore,
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Figure 6. Climatology of the number of days with snowfall (NDS) for (a) full, (b) early, (c) winter, and (d) late seasons. Average values
are for the period 1971–2000. Each point represents a station that is colour-coded according to the membership cluster. The solid black line
represents the power fit. The text boxes show the power fit equation and the average and standard deviation values for each cluster.

they reflect two well-separated nivometric regimes. From a
simple visual inspection of this figure, it clearly emerges that
the investigated signals exhibit a negative tendency (see the
solid black line). More specifically, the trend magnitude (ex-
pressed in number of days per 10 years) is more pronounced
in the full season (−3.4 [−7.3 to 1.7] d per 10 years for clus-
ter 4 and −1.1 [−2.6 to 0.2] d per 10 years for cluster 1) and
in the winter season (−3.2 [−6.0 to 0.0] d per 10 years for
cluster 4 and−1.1 [−2.5 to 0.2] d per 10 years for cluster 1).
Note that the values indicated in square brackets indicate the
95 % confidence interval for linear trend. In the other seasons
(early and late), cluster 1 shows a negligible trend, whereas
for cluster 4 a decreasing rate of −1.1 [−3.3 to 1.0] d per
10 years and −1.8 [−4.5 to 0.6] d per 10 years has been de-
tected, respectively. As revealed by Table 3, the trends are
statistically significant only in the full and winter seasons.
More specifically, in the winter season a negative tendency
significant at 90 % confidence level has been found for clus-
ters 1, 2, and 4, whereas for cluster 3 the linear trend is sig-
nificant at the 95 % confidence level. In the full season, ro-
bust tendencies have been discovered only for clusters 1 and
4. According to Table 3, in all seasons the trend magnitude
gradually increases from cluster 1 to cluster 4; so, in other
words, it rises with increasing altitude, especially in the full
and winter seasons. In addition, Table 3 shows, for each clus-
ter, the percentage of positive, negative, and no trends (i.e. the

subset of tendencies ranging between −0.4 and 0.4 d per
10 years), and the portion of trends significant at 95 % confi-
dence level. As can be expected, most of the stations exhibit
a negative tendency. In particular, for clusters 2, 3, and 4, the
percentage of negative trends is above 60 % in all seasons
and is greater than 90 % for clusters 3 and 4 in winter and
for cluster 4 in the full season. For cluster 1, there is a clear
prevalence of negative trends only in the full and winter peri-
ods, whereas in early and late seasons most of the stations be-
longing to such cluster present a negligible trend. Moreover,
the fraction of significant and negative tendencies has an alti-
tudinal dependency that is more linear and evident in full and
winter seasons. In the latter season, half of the stations per-
taining to clusters 3 and 4 exhibit a negative trend significant
at 95 % confidence level. Another distinguishable behaviour
of the signals shown in Fig. 8 is the strong interannual vari-
ability, which is particularly pronounced in cluster 4. This
is a distinct feature of the precipitation records collected in
mid-latitudes that, with regard to the Apennine area, has been
just emphasised in previous works (e.g. Capozzi et al., 2022).
Focusing on the full season, in cluster 4, the highest SCD
values have been observed in the 1962/63 (105.3 d), 1952/53
(98.2 d), and 1980/81 (95.8 d) seasons, whereas the lowest
SCD values have been observed in the 1989/90 (10.6 d),
2000/01 (22.0 d), and 1963/64 (26.0 d) seasons. The season
in 1962/63 was also notable in terms of SCD for cluster 1
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Figure 7. Climatology of the height of new snow (HN) for (a) full, (b) early, (c) winter, and (d) late season. Average values are for the
period 1971–2000. Each point represents a station that is colour-coded according to the membership cluster. The solid black line represents
the power fit. The text boxes show the power fit equation and the average and standard deviation values for each cluster.

(43.0 d), although the highest value for this group was ob-
served in 1955/56 (45.6 d), which was one of the coldest
and snowiest seasons of the 20th century (e.g. D’Errico et
al., 2022). In cluster 1, the lowest values have been recorded
in the 1989/90 (0.9 d), 1960/61 (2.6 d), and in 1963/64 sea-
sons (2.7 d). Superimposed to the decreasing trend, the Apen-
nine’s SCD also shows considerable decadal variations that
are well captured by the 10-year locally weighted scatterplot
smoothing (loess). The latter, marked as a vermilion line in
Fig. 8, is a robust non-parametric regression technique pro-
posed by Cleveland (1979). By inspecting the behaviour of
loess fit, it is possible to detect four periods characterised
by an extensive duration of snow cover, namely the early
1950s, the 1960–1970 period, the late 1970s–early 1980s,
and the early 1990s, and four time segments with reduced
SCD, namely the late 1950s, the mid-1970s, the late 1980s,
and the late 1990s. The decadal oscillation of SCD seems to
be a common feature of all considered seasons and is more
relevant in cluster 4 time series.

The NDS time series exhibit behaviour very similar to
that described for SCD, as demonstrated by Fig. 9. For clus-
ters 1 and 4, we have detected a gradual decrease in the fre-
quency of occurrence of snowfall events, again particularly
pronounced in full and winter seasons. In the former, the
linear trend analysis revealed a negative tendency of −1.7
[−3.0 to −0.5] d per 10 years for cluster 4 and of −0.8

[−1.3 to −0.1] d per 10 years for cluster 1, whereas in the
latter the tendency magnitude is −1.6 [−2.5 to −0.6] d per
10 years for cluster 4 and−0.6 [−1.2 to−0.1] d per 10 years
for cluster 1. Such trends are statistically significant at the
95 % confidence level, as indicated by Table 4. Strong neg-
ative tendencies have been also found, in the full and win-
ter seasons, for the other cluster-averaged time series (except
for cluster 2, whose trend is not statistically significant in the
full season). As for SCD, in the late season, cluster-averaged
trends are negligible and range between−0.1 [−0.7 to 0.4] d
per 10 years (cluster 2) and−0.6 [−1.6 to 0.2] d per 10 years
(cluster 4). In the early season, negative trends significant at
the 90 % confidence level have been detected for clusters 3
and 4 (trend magnitude is−0.6 [−1.2 to−0.1] d per 10 years
and −0.9 [−1.6 to −0.3] d per 10 years, respectively). Ta-
ble 4 shows that long-term tendencies taking a direction to-
wards NDS reduction are prevalent in all seasons for clus-
ters 3 and 4, with the percentage up to 97 %–100 % in the
winter season, whereas this result is not valid for clusters 1
and 2, in which the no trend fraction predominates in the
early and late seasons. The percentage of stations having a
trend significant at the 95 % confidence level found for clus-
ters 3 and 4, as well as the trend magnitude, is substantially
larger than that discovered for clusters 1 and 2. Such results
suggest the existence of a relationship between the long-term
tendency and elevation in terms of statistical significance and

The Cryosphere, 19, 565–595, 2025 https://doi.org/10.5194/tc-19-565-2025



V. Capozzi et al.: Historical snow measurements in the central and southern Apennine Mountains 579

Figure 8. Cluster 1 (yellow line) and cluster 4 (blue line) snow cover duration (SCD) time series for full (a), early (b), winter (c), and late (d)
seasons. The solid black line shows the linear trend and the dashed black line the 95 % confidence interval for linear trend, whereas the
vermilion line marks the loess smoothing (span= 10 years). The period from 1951 to 2001 has been considered.

Table 3. For each cluster (CL) and for each season (full (F), early (E), winter (W), and late (L)), the average SCD trend value (expressed as a
number of days per 10 years), the percentage of positive and negative trends, and the percentage of no trends are presented. For positive and
negative trends, the fraction of significant tendencies is also indicated. Note that no trends are defined as tendencies ranging between −0.4
and 0.4 d per 10 years. The statistical significance of the trends is coded as follows: ** for 95 % and * for 90 %.

CL Average SCD trend (d per 10 years) Positive trends (%) Negative trends (%) No trends (%)

F E W L Tot. Sig. Tot. Sig.

F E W L F E W L F E W L F E W L F E W L

1 −1.1∗ −0.4 −1.1∗ −0.3 3 2 0 0 0 0 0 0 72 43 81 28 21 14 24 7 24 55 19 72
2 −1.3 −0.6 −1.7∗ −0.3 8 8 0 8 0 0 0 0 73 73 86 62 27 12 35 4 19 19 12 31
3 −3.0 −1.1 −2.8∗∗ −1.4 0 7 0 0 0 0 0 0 86 86 93 86 36 36 50 7 14 7 7 14
4 −3.4∗ −1.1 −3.2∗ −1.8 8 17 0 8 0 0 0 0 92 67 92 83 42 17 50 42 0 17 8 8

magnitude. The decadal trend that emerged from the analy-
sis of the SCD time series is also evident in NDS signals,
as highlighted by the loess fit in Fig. 9. Similar to what has
been observed for SCD, this decadal behaviour is more pro-
nounced in cluster 4. The NDS signals also exhibited very
strong interannual variability, especially in the 1950–1960s.
In cluster 4, the frequency of occurrence of snowfall was
particularly higher in the 1962/63 (40.1 d), 1955/56 (36.8 d),
and 1969/70 (33.0 d) full seasons. It is interesting to high-
light that the second and the third snow seasons more lack-
ing in snow events occurred in the 1950–1960s during the
seasons of 1963/64 (7.7 d) and 1958/59 (9.7 d). The lowest

NDS value has been detected in the 1989/90 season (5.1 d).
The latter has been the weakest season in terms of snowfall
occurrence also for cluster 1 (0.3 d). Very low values (1.6
and 1.4 d, respectively) have also been observed in 1963/64
and 1960/61, respectively. Moreover, the 1962/63 (21.5 d),
1955/56 (18.1 d), and 1953/54 (14.5 d) seasons were the three
richest seasons in terms of snow episodes for cluster 1.

Linear trends for individual stations as a function of eleva-
tion at seasonal timescales are shown in Fig. 10 (SCD) and
in Fig. 11 (NDS). Such diagrams provide more compelling
evidence about the relationship between the trend magnitude
and altitude. As a general result, a moderate correlation be-
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Table 4. For each cluster (CL) and for each season (full (F), early (E), winter (W), and late (L)), the average NDS trend value (expressed as a
number of days per 10 years), the percentage of positive and negative trends, and the percentage of no trends are presented. For positive and
negative trends, the fraction of significant tendencies is also indicated. Note that no trends are defined as tendencies ranging between −0.4
and 0.4 d per 10 years. The statistical significance of the trends is coded as follows: ** for 95 % and * for 90 %.

CL Average NDS trend (d per 10 years) Positive trends (%) Negative trends (%) No trend (%)

F E W L Tot. Sig. Tot. Sig.

F E W L F E W L F E W L F E W L F E W L

1 −0.8∗∗ −0.3 −0.6∗∗ −0.3 0 0 0 0 0 0 0 0 71 32 71 13 48 29 52 0 29 68 29 87
2 −0.6 −0.3 −0.7∗∗ −0.1 0 0 0 0 0 0 0 0 65 32 79 14 32 24 29 3 35 68 21 85
3 −1.2∗∗ −0.6∗ −1.2∗∗ −0.5 0 0 0 0 0 0 0 0 89 83 97 60 60 46 69 29 11 17 3 40
4 −1.7∗∗ −0.9∗ −1.6∗∗ −0.6 0 0 0 0 0 0 0 0 93 86 100 79 71 71 79 14 7 14 0 21

Figure 9. Cluster 1 (yellow line) and cluster 4 (blue line) indicate the number of days with snowfall (NDS) time series for the full (a),
early (b), winter (c) and late (d) seasons. The solid black line shows the linear trend, and the dashed black line the 95 % confidence interval
for linear trend, whereas the vermilion line marks the loess smoothing (span= 10 years). The period from 1951 to 2001 has been considered.

tween the two variables has been found for both snow indi-
cators. More specifically, for SCD, the correlation is stronger
in the late and winter seasons (ρ = |0.63| and |0.62|, re-
spectively), whereas it is slightly weaker in the late season
(ρ = |0.43|). For NDS, different results emerged in terms of
seasonal variability in the correlation. The latter maximises
in the early season (ρ = |0.59|), whereas it is lower in the late
season (ρ = |0.46|). A visual comparison between Figs. 10
and 11 also reveals that SCD trends are characterised by a
larger variability than NDS, especially at altitudes greater
than 1000 m a.s.l. It is worth noting that in the full season
the maximum negative trend (−7.6 [−11.8 to −2.4] d per

10 years) was found for Capracotta (1400 m a.s.l.), a station
belonging to cluster 4. The maximum positive tendency (1.4
[−3.7 to 6.0] d per 10 years) has been detected for Pietra-
camela (1000 m a.s.l.), a station that is part of the same clus-
ter. This result synthesises the strong variability and uncer-
tainty that affects the linear trend estimation at high-elevation
ranges well, which can be interpreted as a consequence of the
strong year-by-year fluctuations, as well as of the local oro-
graphic effect incidence.
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Figure 10. Seasonal snow cover duration (SCD) trends (expressed as a number of days per 10 years) as a function of elevation for the full (a),
early (b), winter (c), and late (d) seasons. Each point represents one station and is colour-coded according to the membership cluster. Trends
significant at 95 % confidence level are displayed as diamond markers.

3.4 Connections with large-scale atmospheric patterns:
preliminary evaluations

A natural evolution of our study is a further investigation
aimed at identifying the main drivers controlling the SCD
and NDS variability in the considered Apennines region.
Recently, several research activities (e.g. Hammond et al.,
2018; Annella et al., 2023; Bertoldi et al., 2023) dealt with
this topic, taking into account both “local” variables, such
as temperature and precipitation, and “global” drivers such
as the large circulation patterns. According to the general
results achieved for the Alpine region, the role of temper-
ature and precipitation in controlling the snow presence is
strongly modulated by the elevation. Generally, at low ele-
vations, most of the snow variability is explained by tem-
perature, whereas at high elevations the precipitation has a
greater relative importance (e.g. Bertoldi et al., 2023). How-
ever, in a very recent study that documented the exceptional
snow drought conditions that affected the Italian Alps during
the winter season in 2021/22, Colombo et al. (2023) discov-
ered an increasingly relevant role of warming air temperature
in driving the snow drought events in the whole investigated
elevation range (864–2200 m a.s.l.). For the Apennines, An-
nella et al. (2023) found that the reduction in SCD observed
in the Montevergine Observatory could be mainly attributed
to the increasing trend in temperature, which was statisti-

cally significant in winter and late seasons in the considered
time interval (1931–2008). In light of such results, it may
be speculated that the decline in SCD and NDS discovered
in our study has been mainly driven by the rising temper-
ature tendency that occurred in the second half of the 20th
century. Currently, we are not able to demonstrate this as-
sumption with a deep investigation. Most of the historical
temperature and precipitation records collected in the study
area, in fact, are not accessible in a ready-to-use digitised
format. Therefore, a complete attribution analysis is left for
future analysis. However, here we discuss some preliminary
linkages between the decadal trend observed in our study for
SCD and NDS signals and the large-scale circulation pat-
terns. More specifically, our analysis starts from the results
of Annella et al. (2023). From this study, it emerged that
short-time and decadal fluctuations in SCD in Montevergine
Observatory are strongly modulated by two teleconnections
patterns, namely the Arctic Oscillation (AO) and the Eastern
Mediterranean teleconnection Pattern (EMP). The first one
is a fundamental mode of the Northern Hemisphere climate
variability as it describes simultaneous shifts in several fea-
tures of the polar vortex (air temperature, air pressure, and
the location and strength of the jet stream). The EMP has
been introduced by Hatzaki et al. (2007) and is referred to
as the difference in the 500 hPa geopotential height anomaly
between the eastern Atlantic and the eastern Mediterranean.
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Figure 11. Seasonal number of days with snowfall (NDS) trends (expressed as a number of days per 10 years) as a function of elevation for
full (a), early (b), winter (c), and late (d) seasons. Each point represents one station and is colour-coded according to the membership cluster.
Trends significant at 95 % confidence level are displayed as diamond markers.

Using the Wavelet tool, we searched for the relationship be-
tween these two large-scale patterns and SCD and NDS sig-
nals. Note that the corresponding index for AO (the AO in-
dex; hereafter AOI) has been retrieved from the Climate Pre-
diction Centre of NOAA’s National Weather Service (Cli-
mate Prediction Center, 2024), whereas the EMP index (here-
after EMPI) was reconstructed in Capozzi et al. (2022), us-
ing version 3 of the NOAA-CIRES 20th Century Reanalysis
dataset (Allan et al., 2011), following the method described
in Hatzaki et al. (2009). The XWT between the AOI and
SCD cluster-averaged time series did not reveal noticeable
results, except for the winter season in which a significant
common power area on a 2-year band was detected between
1960 and 1965. In this region of the time–frequency spec-
trum, the AOI and SCD are in an anti-phase relationship.
More interesting evidence came from the analysis of the re-
lationship between EMP and SCD. Figure 12 presents the
XWT between the EMPI and SCD cluster 4 time series for
all four considered seasons. We have chosen the cluster 4
SCD time series as a reference for this analysis because its
behaviour in the time–frequency spectrum can be regarded as
highly representative of the one observed for the other three
clusters. This aspect has been confirmed by the CWT, which
depicts a coherent picture among the clusters that is charac-
terised by a significant peak in the ≈ 12–14 year band from
1960s to 1990s and by two high-frequency (≈ 2 years) os-

cillations, namely one located between 1951 and 1955 and
the other one between 1960 and 1965. The only exception
is cluster 1 in which the decadal oscillations are not statis-
tically relevant. Starting from the full season (Fig. 12a), it
is easy to detect a significant common power in the ≈ 12–
16 year band from 1955 to 1985 and between 1960 and 1965
in the ≈ 0–2 year band. A close connection between EMPI
and SCD can be also found in the ≈ 12–14 year band in the
early season (Fig. 12b) from 1965 to 1985, whereas in win-
ter (Fig. 12c), the common power area on a decadal scale
is restricted between the early 1960s and early 1970s and
falls entirely within the cone of influence. A very strong and
significant connection between the investigated signals has
been found in the late season (Fig. 12d) on the ≈ 12–16 year
band. The common power area, in this case, extends from
the late 1950s to the mid-1990s, so it embraces almost the en-
tire analysed period. Some linkages in the high-frequency re-
gion have been detected between 1955 and 1965 (≈ 5 year),
in 1985–1990 (≈ 0–2 year band) in the early season, be-
tween the late 1970s and early 1980s (≈ 0–2 year band) in
the winter season, and, finally, in the 1960–1965 and in the
early 1970s (≈ 0–2 year in both cases) in the late season.
The right-pointing black arrows in the significant power ar-
eas indicate that EMPI and SCD clearly swing in phase on
a decadal timescale, adding further evidence about the close
time–frequency connection among the signals. The XWT be-
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Figure 12. Cross-wavelet transform (XWT) between Eastern Mediterranean teleconnection Pattern Index (EMPI) and the cluster 4 snow
cover duration (SCD) time series for the (a) full season, (b) early season, (c) winter season, and (d) late season. The black arrows indicate
the phase relationship between the respective time series. The thick contour designates the 5 % significance level against red noise; the cone
of influence, where edge effects might distort the picture, is shown with a lighter shade. All XWT spectra refer to the period 1951–2001.
Note that black arrows pointing to the right indicate that the signals are in phase.

tween EMPI and NDS cluster 4 time series draws a similar
picture, as testified by Fig. 13. In this case, there is a close
and significant connection on a decadal scale only in the full
season (Fig. 13a) and in the late season (Fig. 13d). The com-
mon power areas are localised in the same spectrum regions
mentioned for SCD. In the≈ 0–2 year band, relevant connec-
tions between EMPI and NDS have been found in the 1961–
1965 period in all seasons, between the late 1970s and early
1980s in winter (Fig. 13c), and in the early 1970s in the late
season. In the early season (Fig. 13b), a common power area
also appears in the≈ 5 year band between the mid-1950s and
mid-1960s. The two signals are generally in a close in-phase
relationship, except for some significant areas in the high-
frequency region where there is a slight lag between the two
signals.

The direct in-phase connection existing between the in-
vestigated snow indicators and the EMPI is in line with what
should be reasonably expected about the influence of EMP
on snow variability in the central and southern Apennines.
The positive phase of the EMP pattern, in fact, is associated
with positive 500 hPa geopotential anomalies over the north-
ern Atlantic and with negative ones over central and eastern
Mediterranean basins (Hatzaki et al., 2007). This synoptic
pattern generally drives Arctic or Polar cold continental air
masses towards Italy and, therefore, is clearly favourable for

snow occurrence and persistence on the ground in the Apen-
nines, as previously demonstrated in Capozzi et al. (2022)
and in Annella et al. (2023). The negative phase of EMP de-
picts a very different configuration, which generally brings
mild weather conditions in the considered area.

4 Discussion

In this study, thanks to the rescue of a large amount of manual
snow observations collected by NHMS during 1951–2001, it
was possible to build up a new, updated and solid reference
climatology for an area, the Apennine regions, in which the
information about past nivometric regime are scarce and very
fragmented. For all considered snow indicators and for all in-
vestigated seasons, we found a relevant altitudinal gradient
that grows as the elevation increases. This result exhibited
a seasonal dependence for SCD and HN. More specifically,
in the first case, the altitudinal gradients are steeper in winter
and reduce in the early season, whereas for HN the altitudinal
gradient is more pronounced in the late season. The clusters
including the stations above 1000 m a.s.l. showed a strong
spatial variability that is mainly related to the orographic ef-
fects. In this respect, our results are in accordance with some
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Figure 13. Cross-wavelet transform (XWT) between the Eastern Mediterranean teleconnection Pattern Index (EMPI) and the cluster 4
number of days with snowfall (NDS) time series for the (a) full season, (b) early season, (c) winter season, and (d) late season. The black
arrows indicate the phase relationship between the respective time series. The thick contour designates the 5 % significance level against red
noise; the cone of influence, where edge effects might distort the picture, is shown with a lighter shade. All XWT spectra refer to the period
1951–2001. Note that black arrows pointing to the right indicate that the signals are in phase.

previous works (e.g. Blanchet et al., 2009; Bertoldi et al.,
2023) related to the Alpine region.

Our analysis has revealed that in the considered Apennine
region the SCD and NDS parameters exhibited a similar be-
haviour in terms of long-term and decadal trends. For both
variables, a decreasing tendency has been detected in the
1951–2001 period. The observed variations are strongly con-
nected with the season (i.e. they are more relevant in winter)
and show a marked dependence on the elevation. It is ob-
viously not straightforward to contextualise such results in
the available literature because the linear trend magnitude
and their statistical significance are strongly dependent on
the analysed time window. Focusing on papers that consid-
ered periods having a good overlap with the present work,
it clearly emerges that our study confirms the local and gen-
eral tendencies observed for SCD and NDS in the Mediter-
ranean area. Regarding SCD, the declining tendency high-
lighted in this study is in agreement with the local trends
found for Apennines (e.g. Petriccione and Bricca, 2019; An-
nella et al., 2023), as well as with the outcomes presented for
several Alpine regions (e.g. Klein et al., 2016; Marcolini et
al., 2017b; Marke et al., 2018; Matiu et al., 2021; Bertoldi
et al., 2023). Another common point between our results
and previous works lies in the elevation dependence of SCD
trends. More specifically, this aspect has been discussed in

Marcolini et al. (2017b), who analysed SCD and HS time
series collected in the Adige catchment (northeast of Italy)
from 1980 to 2009. They found a reduction in both vari-
ables at low- and high-altitude sites, although a difference
emerged between the behaviour of stations located above
and below 1650 m a.s.l. In sites located below this altitude
threshold, the decline in SCD and HS was larger. This work
concludes that areas under 1650 m a.s.l. are more sensitive
to climate variability and to temperature increase than high-
elevation regions. Matiu et al. (2021) have reported a similar
and more generalised result for the Alpine region; they found
a decreasing trend in SCD below 2000 m a.s.l., while no re-
markable variations have been detected above 2000 m a.s.l.,
at least in the period from November to May. The elevation
dependence of snow trends has been also highlighted in a
very recent work (Bertoldi et al., 2023) focused on the north-
eastern Italian Alps. Although this study is focused on HN
indicators, it reported evidence comparable, at least in part,
to SCD-based studies. On a monthly basis, negative trends
were found in the lowest-elevation range (0–1000 m a.s.l.),
with some positive trends from January to March above
2000 m a.s.l., while the intermediate elevation band (1000–
2000 m a.s.l.) showed a strong variability with no robust ten-
dencies. Averaged seasonal trends are negative for all eleva-
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tion ranges; instead, in absolute terms, the maximum nega-
tive trend was found at intermediate levels.

Unfortunately, the stations available in our study cover a
restricted altitudinal band (the only station situated above
2000 m a.s.l., Campo Imperatore, has very limited data avail-
ability), so we are not able to reconstruct the behaviour of
SCD and NDS trends over the elevation range considered in
previous studies for Alps and to identify a critical altitudinal
band that separates different regimes characterised by oppo-
site trend direction. Overall, the results of our study show that
low and intermediate Apennine levels (288–1430 m a.s.l.) are
experiencing a decline in SCD that is similar to what is gen-
erally observed in the Alps. However, in our case, most of
the significant trends have been found in the core of the snow
season (i.e. in the winter), whereas in the Alps the percentage
of negative trends was substantially higher in spring months
(e.g. Matiu et al., 2021).

The NDS is a less-studied variable than other snow indi-
cators such as SCD, HN, and HS. Our results confirm some
evidence found in Switzerland by Marty (2008). From this
study, in fact, a long-term downward tendency in snow days
emerged for the 1948–2007 period. The decreasing NDS sig-
nal is stronger in the low-altitude zone, whereas the higher
stations showed a marked variability. Terzago et al. (2010)
also found a decrease in NDS for the Piedmont region (1971–
2009 period). In a subsequent work, related to a more ex-
tended period (1926–2010), Terzago et al. (2013) discovered
a decline in the fraction of precipitation falling as snow in the
western Alps; in line with our study, the drop in snow events
was found to be more relevant in winter season.

It is interesting to point out that the linkages between EMP
and snow indicators described in Sect. 3.4 have not been re-
ported in any previous work related to the Alpine region. For
this area, most of the available studies searched for connec-
tions with other large-scale circulation patterns, such as the
North Atlantic Oscillation (NAO), the AO and the Mediter-
ranean Oscillation. The results are generally ambiguous and
strongly dependent on the considered region and time inter-
val (e.g. Durand et al., 2009; Kim et al., 2013; Marcolini et
al., 2017b; Bertoldi et al., 2023). For the 1930–2020 period,
Colombo et al. (2022) found that NAO, winter NAO, Atlantic
Multidecadal Oscillation, and AO were anticorrelated with
the standardised snow water equivalent index during differ-
ent phases of the snow season.

Regarding the AO, from the preliminary results presented
in this study based on the cross-wavelet transform, it emerged
that it exerts a less relevant influence than EMP on the nivo-
metric regime of the investigated Apennine region. However,
we feel that additional analyses are necessary to better assess
the relationships between this important atmospheric mode
and the snow variability in the study area. Two previous stud-
ies dedicated to the Apennines (Capozzi et al., 2022; Annella
et al., 2023) found that the recovery in some snow indicators
observed after 2000 is closely linked to the AO trend. It is
possible to assume that a non-negligible difference might ex-

ist between the western and eastern sectors of the Apennines
(the first ones might be more “sensitive” to the AO variabil-
ity).

As stated in Sect. 1, ground observations are crucial for the
assessment of long-term snow variability and trends, espe-
cially in mountainous areas. However, it is necessary to bear
in mind that manual snow measurements have several limi-
tations, mainly related to the observer’s errors in reading and
recording the measurement and also poor siting (World Me-
teorological Organization, 2008). A possible source of uncer-
tainty that affect the dataset rescued in this study, and conse-
quently the results just discussed, is related to the incorrect
counting of snow days in a determined month (i.e. NDS pa-
rameter). As an example, the observer might have considered
a day to be snowy when snowfall occurred without leaving
any trace on the ground. In addition, in many contexts, the
HN measurements can be very uncertain due to the environ-
mental conditions, such as turbulence and/or strong winds,
which may generate snow drifts and spatial inhomogeneity
in snow depth.

5 Conclusions

According to the Intergovernmental Panel on Climate
Change (IPCC) report on a high mountain (Hock et al.,
2019), a general decrease in snow cover duration, glaciers,
and permafrost due to climate change has occurred over the
last few decades. The strong loss in the mountain cryosphere
is likely to have relevant repercussions for the global popula-
tion that relies on the water stored in mountain snow and ice
for their water supply. Despite the serious impacts of moun-
tain cryosphere loss, for several reasons, many mountain ar-
eas remain under-researched. In the Mediterranean, an exam-
ple in this sense is represented by the Apennine region.

A considerable lack, in fact, exists in the knowledge of
the past snow variability for this area, although it has a good
record of past in situ observations. This study has provided a
contribution to bridge this gap through the rescue and anal-
ysis of the snow precipitation measures manually collected
between 1951 and 2001 by the Italian National Hydrologi-
cal and Mareographic Service in an area including a large
part of the central and southern Apennines. After being sub-
jected to QC and homogenisation procedures, the rescued
dataset, consisting of monthly data on the snow cover dura-
tion (SCD), number of days with snow (NDS), and height of
new snow (HN), has been primarily analysed to retrieve a ref-
erence climatology (1971–2000 period). To pursue this aim,
using a methodology based on principal component analy-
sis and k-means clustering, we have grouped the available
stations in different clusters for each snow indicator. This
classification has been mainly driven by the altitude and,
second, by other factors controlling the spatial variability in
snow precipitation, such as the distance from the sea, the site
exposure, the hours of direct sunlight, and local orographic
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features. The presented snow climatology greatly enhances
and expands the existing historical database of several key
snow-related variables, SCD, NDS, and HN, for which con-
tinuous and high-quality measures are difficult to find. In ad-
dition, it constitutes an added value for research focused on
the comprehension of climate dynamics in mountainous ar-
eas, as well as on future changes in snow precipitation in the
Mediterranean region, and provides useful information for a
wide range of application fields, concerning also the socio-
economic impacts of snow precipitation.

Furthermore, using familiar statistical methodologies (the
Sen’s slope estimator and the Mann–Kendall test), we have
identified the linear trend for SCD and NDS time series (the
HN series have not been considered for this analysis due to
the limited length of the available records). Both variables
exhibited a negative tendency for the 1951–2001 period. We
found that SCD and NDS trends are strongly dependent on
altitude, in terms of magnitude and level of confidence. More
specifically, the signal of a decrease in the length of snow
cover on the ground and in the frequency of occurrence of
snowfall gradually grows with altitude and is generally very
strong for stations located above 1000 m a.s.l. Considering
the entire snow season (i.e. the full season from Novem-
ber to April), SCD trends statistically significant at the 90 %
confidence interval have been discovered for cluster 1 (−1.1
[−2.6 to 0.2] d per 10 years) and for cluster 4 (−3.4 [−7.3
to 1.7] d per 10 years). For NDS, trends significant at 95 %
confidence interval have been detected for clusters 1, 3, and 4
(−0.8 [−1.3 to −0.1] d per 10 years, −1.2 [−2.2 to −0.2] d
per 10 years, and −1.7 [−3.0 to −0.5] d per 10 years, re-
spectively). At a seasonal scale, a larger fraction of negative
and significant trends has been found in the winter season
for both variables. In the early and late seasons, the aliquot
of significant tendencies strongly reduces, especially in clus-
ters 1 and 2. In addition, we found that SCD trends exhibit
a more pronounced variability and uncertainty than NDS,
especially in cluster 4 (which includes, for both snow indi-
cators, only stations above 1000 m a.s.l.). In the considered
Apennine area, the SCD and NDS variables also show fluctu-
ations at a decadal scale, as well as a remarkable interannual
variability, in accordance with the findings of previous stud-
ies (e.g. Annella et al., 2023). The decadal behaviour gradu-
ally emerges with increasing altitude and is particularly rele-
vant in cluster 4.

Despite some uncertainties and sources of errors, which
have been briefly discussed in the previous section, this
study can be considered the first Apennine-wide assessment
of snow climatology and long-term trends based on in situ
observations. The information provided by this work con-
tributes to the reconstruction of historical snow variability
in the mountainous areas and paves the way for many future
research activities. In this respect, future studies will be pri-
marily devoted to deeply understanding the physical mecha-
nisms that control the evolution over time of the investigated
snow variables. Regarding this aspect, we provided some

preliminary results by means of a wavelet analysis. More
specifically, from the cross-wavelet transform of the East-
ern Mediterranean teleconnection Pattern Index (EMPI) and
cluster 4 SCD and NDS time series, a significant common
power emerged in the ≈ 10–16 year band. The two signals
are phase-locked, so we can conclude that on a decadal scale
the SCD and NDS behaviour in the investigated Apennines
area mirrors the evolution of EMP. Future analyses should be
oriented to better assess the influence of other teleconnection
patterns (in particular the Arctic Oscillation) on the observed
interannual variability.

In addition, other efforts may be made to (i) extend the
investigated period back and forward in order to further in-
crease the robustness of the trend analysis and to contextu-
alise the observed SCD and NDS tendencies in a broader
time horizon and (ii) to replicate this study for the northern
Apennine sector and for the rest of the southern Apennine
through the rescue of nivometric stations belonging to the
remaining Italian National Hydrographic and Mareographic
Service compartments.

Appendix A

In this Appendix, we provide a detailed description of the
principal component analysis (PCA) results for each of the
three investigated variables: snow cover duration (SCD),
number of days with snowfall (NDS), and height of new
snow (HN).

Starting from SCD, the first PC (Fig. A1a), which repre-
sents 61 % of the total variance, reflects the altitude-related
variability across the whole elevation range. Areas with pos-
itive scores coincide with some of the main mountain ridges
of the considered region (Gran Sasso, Marsicani, Maiella,
and Partenio). Negative scores mark low-elevation areas, as
well as the eastern and southern mountain slopes of the cen-
tral Apennine chain, where the local topographic features are
not favourable for the persistence of snow on the ground.
More compelling evidence about the relationship between
PC1 and elevation is provided in Fig. A2 in which the PC1
scores are plotted against the altitude. A solid positive cor-
relation was found (the linear correlation coefficient, ρ, is
equal to 0.87).

The PC2 (Fig. A1b) separates the central Apennine sector
(Abruzzo and Molise regions) from the southern area. In the
first one, the scores are generally positive, whereas in the sec-
ond one, they are slightly negative. The high positive scores
found in several sectors of Abruzzo and Molise (mainly in
the Gran Sasso and Marsicani areas) indicate relevant posi-
tive SCD anomalies.

The PC3 spatial pattern (Fig. A1c) is characterised by a
clear west–east gradient. More specifically, positive scores
have been found in the Maiella area, in the eastern side of
Marsicani Mountains and in the eastern side of Molise and
southern Apennine. In the western sector of Abruzzo region,
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Figure A1. Spatial pattern of the first four modes resulting from the principal component analysis applied to monthly SCD data.

Figure A2. First principal component (PC1) scores resulting from
the PCA applied to monthly SCD data as a function of the elevation
(in m). Each point represents one station.

negative scores prevail instead. This pattern might reflect
specific large-scale atmospheric weather regimes, associated
with the incoming, over the study region, cold continental air
masses from the Balkan Peninsula. Such an atmospheric sce-

nario promotes conditions favourable to the occurrence and
persistence of snow on the ground over the eastern slopes of
the Apennines.

In the PC4 spatial pattern (Fig. A1d), the scores are gen-
erally around 0.0 except for the northern side of Abruzzo
(Gran Sasso mountains). This pattern might reflect specific
atmospheric conditions that enhance the snow duration on
the ground only in the high-elevation sites of the northern
Abruzzo region.

For the NDS variable, we have selected the first nine PCs
which capture the 70 % of the total variance. According to
Fig. A3a, the first PC represents a scenario in which the spa-
tial distribution of the considered parameter is strictly related
to the elevation. In this sense, additional evidence comes
from Fig. A4, which clearly demonstrates the strong rela-
tionship between PC1 scores and elevation (ρ = 0.87).

In the PC2 spatial pattern (Fig. A3b), there is a relevant
gradient in terms of PC scores in the Abruzzo region. More
specifically, the scores gradually switch from negative to
positive values moving eastward. Areas with positive scores
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Figure A3. Spatial pattern of the first four modes resulting from the principal component analysis applied to monthly NDS data.

Figure A4. First principal component (PC1) scores resulting from
the PCA applied to monthly NDS data as a function of the elevation
(in m). Each point represents one station.

match with Maiella, Marsicani, Matese, and southern Apen-
nine reliefs (Partenio, Picentini, and Lucania mountains). It
may hypothesise that behind this NDS spatial pattern there
is a synoptic-scale atmospheric circulation scheme like that

described for PC3 of SCD variable, i.e. a configuration asso-
ciated with the incoming, over the Italian Peninsula, cold air
masses from the Balkan region.

In the PC3 spatial pattern (Fig. A3c), the scores are nega-
tive over a large part of the study area. Positive values are
restricted to the Campania Apennine (Partenio and Picen-
tini mountains). Therefore, this spatial pattern might repre-
sent meteorological scenarios in which the snowfall events
mainly affect the meridional sector of the considered area.

The PC4 spatial pattern (Fig. A3d) exhibits a spatial struc-
ture close to PC2. However, in this case, the zonal gradient
is not limited to the Abruzzo region, but it is extended to the
whole area. As for PC2, scores gradually increase from west
to east, so the largest values have been found on the eastern
slopes of the Apennines and over the Gargano area.

The other five selected PCs are presented in Fig. A5. It is
worth noting that such spatial patterns represent a very small
fraction of variability (2 % for PC5, PC6, PC7, and PC8 and
1 % for PC9), so it is not straightforward to identify a “co-
herent” behaviour in the spatial distribution of the scores.
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Figure A5. Spatial pattern of the fifth, sixth, seventh, eighth, and ninth mode resulting from the principal component analysis applied to
monthly NDS data.

More specifically, in the PC5 spatial pattern (Fig. A5a), the
most relevant positive NDS anomalies occurred in the Gran
Sasso area (north of Abruzzo) and in the Campania Apen-
nine (Partenio Mountains). PC6 pattern (Fig. A5b) is close
to PC5; however, in this case, positive scores, and so posi-
tive NDS anomalies, are confined to the Marsicani mountain
area. The PC7 spatial pattern (Fig. A5c) reflects meteorolog-
ical scenarios that determine positive NDS anomalies over
the central and northern sectors of Abruzzo region, namely
Molise and Campania Apennine. In the PC8 spatial pattern
(Fig. A5d), positive scores are confined to a specific sector
of Abruzzo (Gran Sasso and Marsicani mountains) and to
the southern sector of Molise. Finally, in PC9, the highest
scores are located over the Gran Sasso area, Molise region,
and, locally, over the Campania Apennine (Fig. A5e).

The results for the height of the new snow variable (HN)
are presented in Fig. A6. Similar to SCD, the first four PCs
have been selected. The first PC, accounting for 52 % of the
total variance, shows a spatial pattern strongly modulated by
the altitude (Fig. A6a). As for SCD and NDS, a strong pos-
itive correlation between scores and elevation has been de-
tected (ρ = 0.83). However, in this case, the scores associ-
ated with stations above 800 m a.s.l. exhibit a great variabil-
ity (see Fig. A7) due to the relevant incidence of orographic
effects on snowfall amounts.

The analysis of the PC2 spatial pattern (Fig. A6b) reveals
a clear west–east gradient in the central Apennine area. The
large positive scores found over the Maiella area, Marsicani

Mountains, Matese, and most of the southern Apennine in-
dicate that such areas receive snowfall amounts that are sub-
stantially higher than average, whereas the negative scores
over the western side of the Apennines are synonymous with
the HN quantity that is near or below average. This spatial
pattern can be interpreted as a consequence of large-scale
configurations that promote the incoming of cold continental
air masses in the central Mediterranean area. In this scenario,
central and southern Italy are often affected by a cyclonic
area driving a northeastern flow, which enhances orographic
precipitation events over the eastern slopes of the Apennines.

In the PC3 spatial pattern (Fig. A6c), the positive scores
are concentrated over the southern Apennine, in some areas
of Molise, and in the Reatini Mountains. In the Abruzzo re-
gion, the scores are generally negative instead. Finally, the
PC4 spatial pattern (Fig. A6d) is characterised by large pos-
itive scores over the western side of the Marsicani area and
the Reatini Mountains. In PC3 and PC4, areas marked with
positive scores receive snowfall amounts that are higher than
average. Such spatial patterns can be related to specific large-
scale weather patterns that modulate the spatial distribution
of snow precipitation in the considered region.
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Figure A6. Spatial pattern of the first four modes resulting from the principal component analysis applied to monthly HN data.

Figure A7. First principal component (PC1) scores resulting from
the PCA applied to monthly HN data as a function of the elevation
(in m). Each point represents one station.
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Appendix B

Figure B1. Spatial distribution of the average seasonal snow cover duration (SCD) over the study area in the period 1971–2000. Each point
represents one station and the corresponding climatological value.

Figure B2. Spatial distribution of the average seasonal number of days with snowfall (NDS) over the study area in the period 1971–2000.
Each point represents one station and the corresponding climatological value.
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Figure B3. Spatial distribution of the average seasonal total height of new snow (HN) over the study area in the period 1971–2000. Each
point represents one station and the corresponding climatological value.
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