Articles | Volume 18, issue 1
https://doi.org/10.5194/tc-18-205-2024
https://doi.org/10.5194/tc-18-205-2024
Research article
 | 
11 Jan 2024
Research article |  | 11 Jan 2024

A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone

Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi

Related authors

The influence of ocean waves on Antarctic sea-ice albedo and seasonal melting, and physical-biological feedbacks
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166,https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
WIce-FOAM 1.0: Coupled dynamic and thermodynamic modelling of heterogeneous sea ice and waves using OpenFOAM-v2306
Rutger Marquart, Alberto Alberello, Alfred Bogaers, Francesca De Santi, and Marcello Vichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2184,https://doi.org/10.5194/egusphere-2025-2184, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Numerical simulations of ocean surface waves along the Australian coast with a focus on the Great Barrier Reef
Xianghui Dong, Qingxiang Liu, Stefan Zieger, Alberto Alberello, Ali Abdolali, Jian Sun, Kejian Wu, and Alexander V. Babanin
EGUsphere, https://doi.org/10.5194/egusphere-2025-698,https://doi.org/10.5194/egusphere-2025-698, 2025
Short summary
An indicator of sea ice variability for the Antarctic marginal ice zone
Marcello Vichi
The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022,https://doi.org/10.5194/tc-16-4087-2022, 2022
Short summary
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022,https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary

Cited articles

Aaboe, S., Down, E. J., and Eastwood, S.: Validation report for the global sea-ice edge and type product, OSI-403-c & EUMETSAT, Norway, 38 pp., 2021. 
Agnew, T. and Howell, S.: The use of operational ice charts for evaluating passive microwave ice concentration data, Atmos. Ocean, 41, 317–331, https://doi.org/10.3137/ao.410405, 2003. 
Aksamit, N. O., Scharien, R. K., Hutchings, J. K., and Lukovich, J. V.: A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics, The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023, 2023. 
Alberello, A., Onorato, M., Bennetts, L., Vichi, M., Eayrs, C., MacHutchon, K., and Toffoli, A.: Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone, The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, 2019. 
Alberello, A., Bennetts, L., Heil, P., Eayrs, C., Vichi, M., MacHutchon, K., Onorato, M., and Toffoli, A.: Drift of pancake ice floes in the winter Antarctic marginal ice zone during polar cyclones, J. Geophys. Res.-Oceans, 125, e2019JC015418, https://doi.org/10.1029/2019JC015418, 2020. 
Download
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Share