Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1653-2024
https://doi.org/10.5194/tc-18-1653-2024
Research article
 | 
09 Apr 2024
Research article |  | 09 Apr 2024

A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism

Anna Braun, Kévin Fourteau, and Henning Löwe

Related authors

Preindustrial to present-day changes in atmospheric carbon monoxide: agreements and gaps between ice archives and global model reconstructions
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Phillip Place
EGUsphere, https://doi.org/10.5194/egusphere-2024-653,https://doi.org/10.5194/egusphere-2024-653, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A microstructure-based parameterization of the effective anisotropic elasticity tensor of snow, firn, and bubbly ice
Kavitha Sundu, Johannes Freitag, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1579–1596, https://doi.org/10.5194/tc-18-1579-2024,https://doi.org/10.5194/tc-18-1579-2024, 2024
Short summary
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024,https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023,https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023,https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
A microstructure-based parameterization of the effective anisotropic elasticity tensor of snow, firn, and bubbly ice
Kavitha Sundu, Johannes Freitag, Kévin Fourteau, and Henning Löwe
The Cryosphere, 18, 1579–1596, https://doi.org/10.5194/tc-18-1579-2024,https://doi.org/10.5194/tc-18-1579-2024, 2024
Short summary
Seismic attenuation in Antarctic firn
Stefano Picotti, José M. Carcione, and Mauro Pavan
The Cryosphere, 18, 169–186, https://doi.org/10.5194/tc-18-169-2024,https://doi.org/10.5194/tc-18-169-2024, 2024
Short summary
Temporospatial variability of snow's thermal conductivity on Arctic sea ice
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023,https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
EGUsphere, https://doi.org/10.5194/egusphere-2023-1928,https://doi.org/10.5194/egusphere-2023-1928, 2023
Short summary
Heterogeneous grain growth and vertical mass transfer within a snow layer under a temperature gradient
Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau
The Cryosphere, 17, 3553–3573, https://doi.org/10.5194/tc-17-3553-2023,https://doi.org/10.5194/tc-17-3553-2023, 2023
Short summary

Cited articles

Adams, E. and Brown, R.: A model for crystal development in dry snow, Geophys. Res. Lett., 9, 1287–1289, 1982. a
Albert, M. and McGilvary, W.: Thermal effects due to air flow and vapor transport in dry snow, J. Glaciol., 38, 273–281, 1992. a
Barrett, J. W., Garcke, H., and Nürnberg, R.: Numerical computations of faceted pattern formation in snow crystal growth, Phys. Rev. E, 86, 011604, https://doi.org/10.1103/PhysRevE.86.011604, 2012. a, b
Bouvet, L., Calonne, N., Flin, F., and Geindreau, C.: Snow Equi-Temperature Metamorphism Described by a Phase-Field Model Applicable on Micro-Tomographic Images: Prediction of Microstructural and Transport Properties, J. Adv. Model. Earth Sy., 14, e2022MS002998, https://doi.org/10.1029/2022MS002998, 2022. a, b, c, d, e, f
Braun, A., Fourteau, K., and Löwe, H.: Simulation parameters and outputs for a rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism, EnviDat [data set], https://doi.org/10.16904/envidat.492, 2024. a
Download
Short summary
The specific surface of snow dictates key physical properties and continuously evolves in natural snowpacks. This is referred to as metamorphism. This work develops a rigorous physical model for this evolution, which is able to reproduce X-ray tomography measurements without using unphysical tuning parameters. Our results emphasize that snow crystal growth at the micrometer scale ultimately controls the pace of metamorphism.