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Abstract. Despite being one of the most fundamental mi-
crostructural parameters of snow, the specific surface area
(SSA) dynamics during temperature gradient metamorphism
(TGM) have so far been addressed only within empirical
modeling. To surpass this limitation, we propose a rigor-
ous modeling of SSA dynamics using an exact equation for
the temporal evolution of the surface area, fed by pore-scale
finite-element simulations of the water vapor field coupled
with the temperature field on X-ray computed tomography
images. The proposed methodology is derived from the first
principles of physics and thus does not rely on any empiri-
cal parameter. Since the calculated evolution of the SSA is
highly sensitive to fluctuations in the experimental data, we
quantify the impact of these fluctuations within a stochastic
error model. In our simulations, the only poorly constrained
physical parameter is the condensation coefficient «. We ad-
dress this problem by simulating the SSA evolution for a
wide range of « values and estimate optimal values by mini-
mizing the differences between simulations and experiments.
This methodology suggests that « lies in the intermediate
range 1073 <« < 107! and slightly varies between exper-
iments. Also, our results suggest a transition of the value of
« in one TGM experiment, which can be explained by a tran-
sition in the underlying surface morphology. Overall, we are
able to reproduce very subtle variations in the SSA evolu-
tion with correlations of R? =0.95 and 0.99, respectively,
for the two TGM time series considered. Finally, our work
highlights the necessity of including kinetic effects and of

using realistic microstructures to comprehend the evolution
of SSA during TGM.

1 Introduction

The specific surface area (SSA) of snow is the interface
area between ice and air in the microstructure of porous
snow, normalized per volume. The SSA is a crucial param-
eter for the optical albedo of snow (Dumont et al., 2014),
fluid permeability (Zermatten et al., 2014), avalanche predic-
tion (Schweizer et al., 2003), microwave remote sensing (Pi-
card et al., 2022), or chemical exchange with the atmosphere
(Hanot and Dominé, 1999). The SSA evolution in time is one
key to quantifying metamorphism (Legagneux et al., 2004;
Domine et al., 2007; Pinzer et al., 2012; Wang and Baker,
2014; Harris Stuart et al., 2023) and needs to be faithfully
parameterized in snow cover models to capture the evolution
of physical properties. Temperature gradient metamorphism
(TGM) is by far the most important type of metamorphism
in dry, natural snow covers (Schneebeli and Sokratov, 2004;
Legagneux et al., 2004) since gradient-free (i.e., isothermal)
conditions exist at most in deep polar firn. However, a de-
tailed physical understanding of the SSA evolution under
TGM is still lacking.

Detailed experimental data on TGM can be conveniently
acquired nowadays through X-ray micro-computed tomog-
raphy (uCT). Imaging of snow samples with ©CT has been
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developed over the last 2 decades (Coleou et al., 2001; Flin
et al., 2004; Schneebeli and Sokratov, 2004; Schleef and
Loewe, 2013) and provides a 3D insight into the microstruc-
ture that is otherwise invisible to the naked eye. In contrast
to many destructive snow measurement methods, uCT pre-
serves the structure of the snow. Since the entire snow mi-
crostructure is available, any parameter of interest, especially
SSA, can be computed within well-characterized uncertain-
ties due to reconstruction and image analysis (Hagenmuller
et al., 2016). Using instrumented sample holders to constrain
temperatures and temperature gradients, in situ time-lapse
observations of the microstructure during TGM are obtained
(Kaempfer et al., 2005; Pinzer et al., 2012; Calonne et al.,
2014a; Hammonds et al., 2015; Wiese and Schneebeli, 2017;
Li and Baker, 2022). While many SSA evolution curves orig-
inated from these studies, none of them have been convinc-
ingly reproduced from a physical model.

Physical models of snow metamorphism must comply
with the ice crystal growth dynamics at the pore scale (Krol
and Lowe, 2016), which include heat and mass diffusion, ac-
commodated by attachment kinetics controlling the deposi-
tion and sublimation of water molecules onto the ice lattice
(Colbeck, 1983; Libbrecht, 2005). Secondary effects on the
temporal SSA evolution might be expected from other pro-
cesses like mechanical deformation (Wang and Baker, 2013;
Schleef et al., 2014) and advection of air in terms of porosity
(Ebner et al., 2016; Jafari et al., 2022). In this picture, one key
parameter driving snow metamorphism is the condensation
coefficient «, also called the attachment, kinetic, or stick-
ing coefficient (Libbrecht, 2005; Kaempfer and Plapp, 2009;
Krol and Lowe, 2016; Demange et al., 2017; Fourteau et al.,
2021b; Bouvet et al., 2022), that controls the kinetics of va-
por deposition and sublimation. The condensation coefficient
is applicable at the micrometer scale of ambient diffusion
processes and thereby subsumes the underlying nanoscale
kinetics resulting from the molecular dynamics on the sur-
face of the ice crystal lattice (Saito, 1996). Many measure-
ment and modeling attempts carefully characterize o for ice
crystals (Libbrecht, 2005; Hobbs, 2010; Barrett et al., 2012;
Libbrecht and Rickerby, 2013; Pokrifka et al., 2020). Never-
theless, « is experimentally challenging to constrain even for
isolated crystal growth. One reason for this is the fundamen-
tal experimental difficulty of inverting growth data as soon
as diffusion is involved (Libbrecht, 2005). The other rea-
son is that o depends on numerous effects such as tempera-
ture, supersaturation, and crystallographic orientation (Saito,
1996; Libbrecht, 2005). The large variations between basal
and prismatic surface kinetics are, for example, the key to
snow crystal morphology (Barrett et al., 2012). The situation
is even more complicated in the snow cover, where many
different surface orientations exist simultaneously (Granger
et al., 2021). Therefore, the kinetics is more difficult to as-
sess in snow, and only a few studies exist constraining « from
the comparison of uCT-based simulations with experiments
(Bouvet et al., 2022; Fourteau et al., 2021a). Thus, « consti-
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tutes the great unknown in snow metamorphism as is com-
monly stressed in TGM models (Miller and Adams, 2009;
Kaempfer and Plapp, 2009; Calonne et al., 2014b).

Model attempts characterizing TGM can be classified by
their treatment of attachment kinetics and whether the mi-
crostructure is taken from uCT or geometrically idealized.
Using uCT images, Flin and Brzoska (2008) calculated de-
position fluxes in the absence of kinetics under the assump-
tion of local equilibrium at the interface (diffusion-limited
growth). A similar approximation was used in Krol and Lowe
(2016) to relate the temperature-gradient-driven deposition
fluxes to measured, local interface velocities. The latter can
be considered a generalization of the (diffusion-limited) air
bubble migration under a temperature gradient in ice (Shreve,
1967) to complex geometries. However, the assumption of
purely diffusion-limited growth has already been questioned
(Krol and Lowe, 2018) due to contradictions with the mea-
sured SSA evolution. The uCT-based theoretical homoge-
nization (Calonne et al., 2014b), in contrast, applies to the
slow kinetic (i.e., kinetics-limited) regime. The intermediate
regime between the diffusion-limited to kinetics-limited va-
por transport under a temperature gradient was numerically
analyzed in Fourteau et al. (2021a), where the latter approach
was physically similar to the phase field model (Kaempfer
and Plapp, 2009). Since the choice of o has a significant
impact on numerical effort, it is not surprising that the ma-
jority of modeling attempts exist for simplified geometries
(mostly spheres) (Adams and Brown, 1982; Colbeck, 1983;
Albert and McGilvary, 1992; Miller and Adams, 2009) at the
expense of microstructural realism. The most widely used
models for predicting the SSA evolution under TGM are
those implemented in snow cover models, e.g., Flanner and
Zender (2006). Like other simplified models, Flanner and
Zender (2006) neglect kinetics and employ diffusion-limited
growth for the distribution of spherical particles. Due to the
involved empirical parameters (mean sphere radius and spac-
ing), which prevent an unambiguous mapping onto arbitrary
microstructures, validating these models through ©CT labo-
ratory experiments would remain inconclusive.

In principle, no empiricism is required, and the SSA evolu-
tion for arbitrary 3D microstructure can be computed exactly
(Krol and Lowe, 2018), as long as the required parameters
are supplied. The surface area equation is rigorously formu-
lated on the basis of a growth rate that can be computed from
the interfacial curvature and the interface velocity (v,) after
surface averaging. While the interfacial curvature is a purely
geometrical quantity that can directly be computed from a
uCT image, v, is a physical quantity that further depends
on the involved physical processes. In this framework, any
model that predicts v, to be the result of 3D heat and mass
diffusion with interface kinetics could be employed here —
that is, either phase field models (Kaempfer and Plapp, 2009)
or diffusion models (Fourteau et al., 2021b). The two are
equivalent in view of the involved physics and only differ
in their representation of the interface. This route to the SSA
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evolution in TGM is rigorous (apart from numerical approx-
imations) but has never been pursued before. Advancing on
this route is the aim of the present work. To this end, we com-
bine a finite-element (FE) solution of the pore-scale heat and
mass diffusion equations following Fourteau et al. (2021b)
with the exact surface area equation from Krol and Lowe
(2018) in order to reproduce the SSA evolution during TGM
from the four-dimensional (4D) uCT image data from Pinzer
et al. (2012).

The paper is organized as follows. The theoretical back-
ground for pore-scale diffusion and the SSA is presented
in Sect. 2. In Sect. 3, we describe the numerical proce-
dures (meshing, FE solution, and image processing), a simple
stochastic error analysis, and the validation of our numerical
workflow against an analytical solution. The simulations for
the TGM time series are shown in Sect. 4 and discussed in
Sect. 5.

2 Theoretical background
2.1 Heat and vapor transfer at the pore scale

For an arbitrary snow structure, morphological changes dur-
ing metamorphism are predominantly driven by the coupled
diffusion of heat and mass, together with ice—air interface
evolution, due to deposition and sublimation of vapor. In the
following, we closely follow the descriptions by Kaempfer
and Plapp (2009), Calonne et al. (2014b), Krol and Lowe
(2016), and Fourteau et al. (2021a). We consider a represen-
tative snow volume at the microscale consisting of ice and
air and denote the subdomains occupied by the ice and air
phases by 2; and €2, respectively. In the following, sub-
scripts i and a denote quantities which are defined in the
respective domains €2; and €2,. Due to the separation of
timescales between heat and mass diffusion in the pores and
the evolution of the interface, we employ the common as-
sumption of a small particle Péclet number (Libbrecht, 2005)
and consider stationary heat and mass diffusion equations
(i.e., Laplace equations). Furthermore, we neglect the influ-
ence of mechanical deformation as is usually done in pore-
scale metamorphism models (e.g., Calonne et al., 2014b;
Krol and Lowe, 2016). We also neglect the potential pres-
ence of convection and air advection in the pore space. These
assumptions are consistent with the experimental data used
in this article, obtained under controlled laboratory condi-
tions (Pinzer et al., 2012). They are also good candidates in
terms of minimum-required complexity to model SSA evo-
lution from pore-scale physics. The partial density of water
vapor in air, py, and the ice and air temperatures, 7; and 7,
respectively, are governed by

DyV?p, =0 in Q,, (1
K, V2T, =0 in Q,, )
KiV2T, =0 in i, (3)
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where D, is the vapor diffusion constant in air, and «; and «,
are the thermal diffusivities of ice and air, respectively.

The heat and mass diffusion equations are coupled via

boundary conditions on the ice—air interface I". The mass
conservation at the ice—air interface is linked to the water
vapor concentration by a Stefan-type condition:
(pi—pv)vy = Dyn-Vp, onT, “4)
where p; denotes the ice density; n is the unit normal vector
field on I", which is oriented into the pore space €2,; and vy,
is the interface velocity on I' in the direction of n. The ve-
locity vy, is therefore positive for deposition and negative for
sublimation.

The conservation of energy requires the continuity of tem-
perature and heat flux on the ice—air interface according to

T,=T, onTl, %)
kin-VT; =x,n-VT, onTl. (6)

As per Krol and Lowe (2016), the latent heat during the
sublimation and deposition is neglected for reduced model
complexity. Since mass and energy conservation involves the
unknown interface velocity v,, the internal boundary condi-
tions must be completed by a constitutive law that character-
izes v, during crystal growth. Here, we employ the Hertz—
Knudsen law (Libbrecht, 2005; Kaempfer and Plapp, 2009;
Fourteau et al., 2021a), which includes the impact of in-
terfacial curvature on the equilibrium vapor concentration
(Gibbs-Thomson effect) according to

o
oy = py,s(T)(1 +do H) + ——
ov

v, onl. @)

kin

The equilibrium (or saturation) vapor concentration on a flat
surface at temperature 7 is denoted by py s(T'), the capillary
length by dp, the mean curvature by H, the condensation co-
efficient by «, and the kinetic velocity by vi,. The capillary
length is related to dy =y a’/(kg T), where y is the inter-
facial free energy, a is the mean intermolecular spacing of
water molecules in ice, and kg is the Boltzmann constant.
The kinetic velocity is defined here as viin = +/kg T /27 m),
with the mass of water molecule m. This definition follows
Fourteau et al. (2021a) and thus differs from the definition in
Libbrecht (2005). In the Hertz—Knudsen equation, the con-
densation coefficient « is defined as the probability of a water
molecule sticking to a surface after impinging on it. There-
fore, values in the range [0, 1] are commonly desired, where
a — 0 corresponds to slow surface kinetics, and for o ~ 1
the diffusion-dominated regime is attained (Libbrecht, 2005;
Fourteau et al., 2021a). Mathematically the equation remains
well defined also for o > 1, which may be physically in-
terpreted as a deviation from the local constitutive behavior
(Eq. 7) due to non-local surface processes (Libbrecht, 2005).
Although « is known to depend on temperature, supersatura-
tion, and crystallographic orientation and to vary on different
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parts of the ice—air interface (Libbrecht, 2005), we rely on
the simplifying assumption of a single and constant « value.
It should thus rather be understood as an effective condensa-
tion coefficient.

2.2 Evolution of SSA

In this article, we use two SSA definitions: specific surface
area per unit volume s and specific surface area per ice vol-
ume SSAvy. They are closely related through the ice volume
fraction ¢;:
SSAy = 8)
VT
We mainly work with the quantity s for the rest of the article.
However, we note that the quantity SSAy is more commonly
used in the snow community (e.g., Matzl and Schneebeli,
2006) since it directly corresponds to the optical diameter.
The solution of the heat and mass diffusion equations
(Egs. 1-3) with boundary conditions (Eqs. 4-7) yields the
spatially varying interface velocity v, at any point on the ice—
air interface I'. As shown by Drew (1990) and Krol and Lowe
(2018), this information, together with information about
surface curvature, is sufficient to calculate the evolution of
the SSA rigorously via surface averaging. As a result, for sin-
gle grains or statistically homogeneous microstructures, the
surface area evolution equation can be expressed as follows:

s=2sv,H. ©)]

Here, the term v, H, referred to as the growth rate in this
article, is the product of the local interface velocity v, and the
local mean curvature H averaged over the ice—air interface
area (the surface average being indicated by an overline over
the product). Equation (9) is a linear homogeneous first-order
ordinary differential equation and can be formally solved in
closed form by the separation of variables, yielding

t

s(t) = 5(0) exp Z/I)H_H(t)dr ) (10)
0

Equation (10) allows us to compute the SSA evolution from
the growth rate v, H, which must be computed from the so-
lution of the 3D diffusion problem. This link between the
SSA evolution and the heat and mass diffusion equations is
rigorous.

3 Numerical modeling

The end goal of our numerical modeling is to simulate the
SSA decrease in snow samples over time based on the pore-
scale physics and to compare this decrease to experimental
observations. For that, we rely on time-resolved uCT im-
ages that were obtained under TGM conditions (Pinzer et al.,
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2012). These uCT scans provide (i) experimental data of the
evolution of the SSA over time and (ii) snow microstructures
that can be used for our physical modeling. The computa-
tion of a vapor field using an FE simulation, combined with
the local curvature of the snow sample, allows us to estimate
v, H over a given snow microstructure. With Eq. (9), this
yields the evolution of the SSA during a given time interval.

As we want to reproduce the SSA evolution of entire time
series, our general workflow is as follows. For a given ex-
perimental time series, we initialize the first term s! of the
simulated SSA values using the SSA deduced from the first
1 CT image of the experimental time series. Then, the second
simulated SSA value s is computed by applying the growth
rate deduced from an FE simulation performed on the first
uCT image. The procedure is then repeated to compute the
nth term of the simulated SSA s” using the already known
value s"~! and an FE simulation performed on the (n — 1)th
uCT image. The workflow and its different steps are detailed
in the sections below and illustrated in Fig. 1.

3.1 uCT time-lapse experiments

The numerical simulations were conducted on 4D image data
of two TGM experiments (series 1 and 2), which were pre-
viously acquired and have already been analyzed in Pinzer
et al. (2012) and Krol and Lowe (2016). In the experiments,
a constant temperature gradient was applied by adjusting a
snow sample’s bottom and top temperatures in an instru-
mented tomography sample holder known as Snowbreeder
(Pinzer and Schneebeli, 2009a). Series 1 lasted 384 h, while
series 2 lasted 665 h. The mean temperature T of the sam-
ple and the temperature gradient VT are similar for both se-
ries: T = —8.1°C and VT =47 Km™! for series 1 and T =
—7.6°C and VT =55Km™! for series 2. Both time series
start from rounded grains with slightly different initial val-
ues of SSA and volumetric density, namely SSAy (f =0) =
20mm~" and ¢;(r = 0) = 0.31 for series 1 and SSAy(r =
0) =24 mm~" and ¢;(r = 0) = 0.28 for series 2. For further
experimental details, we refer to Pinzer et al. (2012).

The nCT image data were taken from the snow sample ev-
ery 8 h in time-lapse mode and segmented into binary images
as described previously (Pinzer et al., 2012). These binary
images are denoted by

1(ty),
1 (tn),

n=1,2,...,49,
m=1,2,...,84,

for series 1, (11D

for series 2, (12)

at different time steps and are 300 x 300 x 196 voxel im-
ages with voxel length of 25 x 10™®m in series 1 and of
18 x 107°m in series 2. This corresponds to samples of
7.5 x 7.5 x 4.9 mm? for series 1 and 5.4 x 5.4 x 3.5 mm? for
series 2. Both series show the commonly observed decay of
SSA (Taillandier et al., 2007; Pinzer and Schneebeli, 2009b;
Calonne et al., 2014a).
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Figure 1. Schematic illustration of the workflow used in this study in order to compute the modeled SSA values s", n =2, ..., N+ 1.

For each 3D image of a uCT time-lapse series, a tetrahedral mesh is produced and a heat and mass diffusion simulation is conducted. The
simulated interface growth velocity v, is displayed in color in the figure (blue corresponding to a receding interface and red to a growing
interface). In the post-processing step, the growth rates vy, H () are extracted and used to model the SSA evolution according to Eq. (18).

3.2 FE solution of temperature and vapor fields

3.2.1 Meshing

The production of an appropriate mesh that discretizes the
air and ice domains, preserves the ice—air interface, and
is fine enough to get accurate numerical solution (without
overloading computational resources) is a key requirement
for our problem. To this end, we employ the open-source
Computational Geometry Algorithms Library (CGAL)
(The CGAL Project, 2022). Specifically, we use the class
Polyhedral_mesh_domain_with_features_3

that implements a tetrahedral meshing of a domain bounded
by polyhedral surfaces, which are preserved during the
meshing process. The provided surfaces need to be closed
and free of self-intersections. To obtain such surfaces, we
extract the ice—air interface from the binary uCT data
(Egs. 11, 12) following the procedure from Krol and Lowe
(2018), by applying a Gaussian smoothing and the contour
filter from the Visualization Toolkit (VTK) (Schroeder et al.,
2006). However, by default, this procedure applied to uCT
images yields a surface that is open at the boundaries of
the domain. In order to obtain closed surfaces, we added
a small air padding (3 voxels thick) around the image.
This allowed us to properly define a closed outer boundary
suitable for meshing. As detailed below, we provided special
care to ensure that the introduction of this artificial air
padding does not perturb the simulation within the snow
microstructure itself. Mesh_Criteria_3 parameters
control the meshing algorithm in CGAL; mesh tetrahedra
are regulated by the radius—edge ratio upper bound of 1.5
and circumradius upper bound of 3 voxels, and triangles
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in the boundary surface mesh are regulated by the lower
angular bound of 25° and radius upper bound of 0.75 voxels.
These mesh parameters were manually fine-tuned through
visual inspection. We estimated the sensitivity of our results
to the mesh parameters. We found that doubling the number
of elements in the mesh impacted the simulated growth rate
by about 10 %. This is small in light of the dependence of the
SSA values on the condensation coefficient « investigated
in this study. Moreover, the very good agreement between
an FE simulation and the analytical solution for a spherical
problem (see Sect. 3.5) suggests that our meshing criteria
yield an appropriate mesh. We save the mesh in four files
listing the nodes, bulk elements, boundary elements, and
header information, defining a mesh in the format of the FE
software Elmer (Malinen and Raback, 2013). In addition,
we computed the boundary weight at each mesh node k of
the triangulated ice—air interface I'j;:

wk=/1ﬂk dry,
Ty

where ¥ is the basis function assigned to the node k so that
the sum of all boundary weights wy gives the area of the
whole boundary surface. Saving boundary weights is sub-
stantial for the computation of the interface velocities as sur-
face integrals over the solution of heat and mass diffusion
equations. For consistency and accuracy, employing the same
integration scheme that underlies the FE solution is advanta-
geous.

The FE meshes of this article are based on all the avail-
able uCT images. We verified that these selected volumes
were large enough to yield representative results. By varying
the sub-volumes extracted from the center of uCT images

13)
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at the start and the end of both series (I(r), I (ta9), I(1),
and 1 (r33)), we found that the simulated growth rate corre-
sponds to a representative value for the sample sizes used in
this study. This is consistent with the results of Calonne et al.
(2011) for thermal conductivity, who report representative-
ness for sample side lengths of between 2.5 and 5 mm.

3.2.2 FE solution

On the tetrahedral FE mesh with a preserved surface, we
solve heat and mass diffusion equations (Eqgs. 1-3) em-
ploying the open-source FE software Elmer (Malinen and
Raback, 2013). For the simulation, we need to apply a given
temperature gradient across the snow microstructure. How-
ever, due to the presence of artificial air padding, directly ap-
plying the required temperature gradient across the whole FE
mesh (snow plus air padding around the image) would result
in a smaller temperature gradient within the snow itself (as
the air is less conductive than the snow and thus concentrates
the temperature gradient). In order to obtain the proper tem-
perature gradient across the snow microstructure, the sim-
ulations are performed in two consecutive steps. First, the
heat diffusion equation is solved over the whole FE mesh
(snow plus air padding around the image), and its result is
used to estimate how a temperature gradient applied over the
whole FE mesh translates into a temperature gradient within
the snow microstructure itself. This allows us to determine a
corrected temperature gradient to be applied over the whole
FE mesh in order to obtain the desired temperature gradi-
ent in the snow. This corrected temperature gradient is then
used to solve the heat and mass diffusion equations with
the appropriate temperature gradient across the snow mi-
crostructure. For the computation of heat and mass diffusion
equations, we use the standard Elmer solvers Heat Solver
and AdvectionDiffusionSolver following Fourteau
et al. (2021a). The equations are solved with the iterative bi-
conjugate gradient stabilized method (BiCGSTAB; Van der
Vorst, 1992) with an incomplete lower—upper (ILU) precon-
ditioner, meant to facilitate the numerical solving by per-
forming an incomplete LU factorization (Saad, 2003). The
maximum number of iterations is set to 2000, and the con-
vergence tolerance is set to 10~ !9 for the heat diffusion equa-
tion and to 10™!2 for the mass diffusion equation. The correct
temperature gradient across the domain is applied by setting
top and bottom temperatures to

h-VT h-VT
Ttop =T— , Toottom =T + 7 (14)

where T and VT are the experimental temperature and tem-
perature gradient, respectively, and # is the total height of the
sample.

For the vapor boundary condition, we combine the Stefan
condition (Eq. 4) by neglecting the pyv, term due to py < pj
and the Gibbs—Thomson equation (Eq. 7) to obtain a Robin
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boundary condition at the ice—air interface:

Dyn -V py = avinlpy — pv.s(1 +doH)I,
Vkin ~ 140ms™!, dp ~ 10 m. (15)

Here, the equilibrium water vapor concentration is given by
the Clausius—Clapeyron relation, corrected for the Gibbs—
Thomson effect (Fourteau et al., 2021a):

M, L1 1(1 o)
s = —Pyexpl = —— =1+ ,
Pos = Rr 0P\ R\ 7, 7 T 0

mPy 3 L
— ~1.32kgKm ™3, -~ 6140K, Ty ~ 273K, (16)

where M is the molar mass of water, R is the ideal gas con-
stant, L is the latent heat of sublimation of ice, 7} is the ref-
erence temperature, and Py is the saturation pressure at Ty. In
contrast to Calonne et al. (2014b) and Fourteau et al. (2021a),
the curvature term doH is not neglected. The mean curva-
ture H on the surface mesh is obtained following Krol and
Lowe (2018), involving the shape operator computed with
the normal vector field. We compute the field of normal vec-
tors n using the dedicated routine of Elmer. It was found to
be more reliable than VTK computations performed on the
CGAL mesh, as the latter sometimes produces areas with re-
versed normal vectors.

Finally, the required local interface velocity v, is com-
puted using the vapor flux deduced from the FE simulation.
For this, we use the Calculate Loads option of Elmer
that provides the vapor flux f; (expressed in kgs™!) at each
node k of the ice-air interface. Dividing by the associated
boundary weight wy yields the corresponding deposition/-
sublimation flux (expressed in kgm~2s~!) over the ice—air
interface. Thus, the interface velocity at node k is recovered
from the simulation as

W)k = ==~ (17

3.3 Post-processing and derived SSA evolution

For a given time sequence 1, t2, ..., ty =t, withty = NA
of available uCT images (Eqgs. 11 and 12) and available FE
solutions of the vapor field, the SSA is inferred from the dis-
cretized solution of Eq. (9) obtained with the forward Euler
method:

"L =" 1 2AS™ vy H (1), (18)

where s" := s(¢,). The rates v, H (t,,) are calculated for each
time step f, as surface integrals from the 3D FE solution. For
that, we use the VTK package and first cut off the small air
padding on the sides using vtkClipDataSet. Then, the
triangulated ice—air interface is extracted. The local interface
velocity v, is directly taken from the FE simulation using
Eq. (17). For the local curvature H, we employ the image
analysis derived in Krol and Lowe (2018), which is based
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on the shape operator, as explained in Sect. 3.2.2. Finally,
the surface integration for the average in v, H (¢,) takes into
account the variable element size of the triangular mesh of
the ice—air interface.

3.4 Stochastic model for the discretization error

While the combination of the theoretical solution of the dif-
fusion equation and the SSA evolution is, in principle, ex-
act, the 4D image data processing and the derived SSA are
subject to experimental and processing errors. These errors
could be of various origins; for instance, they can occur due
to uncertainties related to the estimation of the ice—air in-
terface from the wCT scans or due to errors related to the
numerical FE discretization. When simulating the temporal
evolution of SSA over time, these errors accumulate and are
propagated into the modeled decrease in s (). To analyze how
these errors translate to the overall SSA decrease and how
this depends on the temporal resolution, we resort to a simple
stochastic error treatment. To this end, we write the rigorous
representation of the SSA evolution from above as

t

s™Me() =s5(0) exp | 2 f dr r'™e(7) (19)
0

and indicate that the true decay rate, r™¢(t) = v, H, is in
general unknown and concealed by errors. In the simplest
setting, one would expect that the predicted SSA can, there-
fore, be written as

t

s(t) =s(0)exp Z/dr r(t) |, (20)

0

where the measured rate r(t) differs from the true rate by a
noise term via

r(t) =r'™ () +8r (7). 21

Here, 6r is an additive noise representing uncorrelated er-
rors (for now of unspecified origin), which affects the com-
putations at each time step. This implies that, on average, the
computed SSA estimates are not equal to the true value s™®
but rather to

t

s(t) = s"™(1) <exp 2 / dr 8r (1) > (22)

0

where (-) denotes the average with respect to the additive
noise. For a finite time step A, the discrete solution can now
be written as

N
sa(t) = s (1) <exp <2A28r(t,~))>, (23)

i=1
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where the dependence on the time step A has been made
explicit in the notation. For uncorrelated measurement er-
rors, we assume §r; := ér(t;) to be independent and identi-
cally distributed Gaussian random variables with zero mean
and variance <5ri2> =02, Since the averaged exponential in
Eq. (23) is nothing but the characteristic function of 8r;, the
average can be readily calculated and written as

sa(r) = s™ (1) exp(2Ac?r). (24)

Since the true SSA value in Eq. (24) is unknown, absolute
errors are a priori not accessible. However, we can exploit
Eq. (24) to define a relative error metric that quantifies the
differences according to different temporal resolutions when
integrating Eq. (19). To this end, we define

(sa(t) —sa/(1))?
sa(t)?

which allows us to assess the influence of using different time
steps in the SSA evolution. By simplifying Eq. (25), we infer

e(A, A1) = , (25)

g(A, N, 1) =[1—exp|A — A|o?)], (26)

which relates simulated SSA differences at time ¢ to the tem-
poral resolution of the model and the variance of the mea-
surement error o.

3.5 Workflow validation: growth of a spherical shell

We set up a complex numerical workflow that starts with a
voxel image, computes the interface velocity v, from an FE
simulation, and eventually yields the growth rate v, H after
surface integration. In order to validate the entire workflow,
we consider a test case that can be compared to an analytical
solution. To this end, we employ the classic situation of the
Laplace equation in a spherical shell for the vapor concen-
tration py (r) with the radial coordinate » around a spherical
particle with radius R and with the fixed vapor concentra-
tion po applied at the outer shell at distance R,. A Robin
boundary condition (Eq. 15) is applied at the inner surface
of the sphere, under the form Dy n -V p, = avkin[ oy — pv s,
with py ¢ maintaining a constant value smaller than ps,. Note
that this problem is temperature-independent and is fully de-
termined by the radius of the shells and the values of po, and
ov,s- In this case, the interface velocity is known analytically
(e.g., Carslaw and Jaeger, 1986), and due to spherical sym-
metry, the growth rate averaged over the surface is given by
the value of the solution at » = R, via

U_n_& Poo — Pv,s
R PiR(R_R_Z_i_&).

Roeo ®Ukin

v, H =

27)

This analytical solution is compared to the numerical so-
Iution as follows. We start from a voxel image representa-
tion of the spherical shell as illustrated by the inner sphere in
Fig. 2a, where the inner radius is set to R = 10 voxels, and
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the outer radius is set to Ry = 15 voxels with a voxel size
of 18 um, corresponding to inner and outer radii of 0.18 and
0.27 mm, respectively. In this way, the length scales of the
test case are of a similar order of magnitude as the real mi-
crostructures considered later. Closed triangulated inner and
outer sphere surfaces are created by applying the contour
filter, which is subsequently passed as input to the CGAL
volume meshing. A representation of the tetrahedral volume
mesh obtained from CGAL and the corresponding triangular
surface meshes are shown in Fig. 2b, where the volume mesh
of the air space inside the sphere has been left out for vi-
sual clarity. The slightly flattened regions on the sides of the
sphere due to the original representation on a cubic lattice are
still visible. The figure also reveals that the obtained CGAL
mesh size is adaptive; i.e., in the vicinity of the interface, el-
ement sizes are reduced. After solving the vapor equation,
with appropriate boundary conditions, we obtain the inter-
face velocity v,, shown in Fig. 2b. As expected, we observe
a positive velocity on the inner shell, corresponding to vapor
deposition, and a negative velocity on the outer shell, cor-
responding to sublimation. We then use our standard post-
processing procedure to calculate the averaged growth rate
v, H as an integral over the triangulated surface of the inner
sphere with local curvatures and interface velocities as de-
scribed previously in Sect. 3.2.2 and 3.3. Since we shall later
focus on variations as a function of the condensation coeffi-
cient, we have repeated this procedure for 10 different values
of «. We also used two slightly different mesh quality pa-
rameters of the CGAL mesh to assess the sensitivity of the
smoothness of the surface compared to the standard setup.
The results of the validation are shown in Fig. 2c, yielding an
excellent agreement of the numerical workflow with the ana-
lytical results for either smoothness. The results demonstrate
that the choice of meshing and solver parameters leads to re-
liable numerical results. The agreement provides confidence
in the correctness of the implementation of the entire work-
flow, which is now applied to the 4D image data of TGM.

4 Results
4.1 Overview

As an overview and for a visual inspection of the microstruc-
tures and the rates derived from the FE solution, we show
in Fig. 3 the initial and the final microstructure of both ex-
perimental series, each colored according to the interface ve-
locity v, (computed using Eq. 17). This reveals the morpho-
logical differences at the end of both experiments, where the
longer experiment (series 2) has evolved into a more pro-
nounced depth hoar state with enhanced formation of cup
crystals (Pinzer et al., 2012). The simulations from Fig. 3
were carried out for the condensation coefficient o = 107!
for series 1 and o = 107225 for series 2, which coincides
with the best root mean square error (RMSE) agreement in
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Fig. 4c that is described in detail in the following section.
As suggested by the analytical solution (Fig. 2¢) or the sen-
sitivity of the vapor fluxes by Fourteau et al. (2021a), the
simulated SSA rates are highly sensitive to the condensation
coefficient «.

4.2 Coarse temporal resolution modeling: « estimation

In the first step, we compare the temporal evolution of the
SSA s in the experimental data and in the model using a large
time step for the modeled data. For that, we downsample the
experimental wCT time series to match the coarse temporal
resolution and only perform FE simulations on those. Specif-
ically, the modeled SSA values are computed with a coarse
time resolution of A =48h for series 1 (corresponding to
9 temporal points) and A &~ 60 h for series 2 (corresponding
to 15 temporal points). This reduction in numerical effort al-
lows us to perform a sensitivity study and estimate a value for
the condensation coefficient « that best matches the experi-
mental data. A fixed constant « is used for each simulation.
The range of « varies from 1073 to 1 for series 1 and from
1073 to 10! for series 2. For the comparison with these sim-
ulated data, we simply use all available experimental SSA
data (acquired for a temporal resolution of 8 h). The results
are shown in Fig. 4a, b.

We note that a few simulation points are missing in Fig. 4
due to the non-convergence of the FE solver. That being said,
these missing points do not modify the overall decay of the
simulated SSA time series. The best visual agreement be-
tween the experimental and the modeled data is found for

abest | =107" for series 1 and a2 , = 1072 for series

2. For series 1, the initial stage obf r#l?;ez modeled curve with
al’:rsites | is close to the experimental data, while the final stage
significantly underestimates the observed SSA. The same
trend can be seen in series 2 although it is less prominent.
The experimental data of series 2 reveal significantly more
fluctuations in the initial phase, which is naturally not cap-
tured by the coarse-resolution modeling.

To assess the accuracy of modeled data quantitatively, the

RMSE is computed according to

N 2
sk —st )
RMSE = \/Zn_l e);\[; mod , (28)

where N is the number of time steps involved in the mod-
eling. The results are shown in Fig. 4c. The minimum of
the RMSE curve coincides with the best visual agreement,
ie, a®L  =10"" and ® , =107>%. The difference
between the two optimal « values is 1 order of magnitude.
Since the modeled curve for series 2 does not drop as much
as the curve for series 1 in the final stage, the RMSE mini-

mum for series 2 is lower despite higher data scattering.
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Figure 2. (a) Voxel sphere obtained from a binary image and used to constrain the problem. (b) Clip of the outer and inner spherical shells
with visible elements colored according to the interface velocity v, (sublimation in blue, deposition in red). (¢) Comparison of the growth
rate v, H on the inner radius R of the theoretical (theo) and simulated (sim) solution of the spherical shell test case for different values
of the condensation coefficient «. Two different surface mesh qualities, with smoothing (smooth) and without smoothing (non-smooth),
are employed. The red dots, blue squares, and solid black line correspond to v, H on the left y axis, while the dashed red and blue lines

correspond to the simulation error on the right y axis.

Series 1

Series 2

(©)

(b) End (t = 384h)

(d) End (t = 656h)

Figure 3. Evolution of the ice—air interface, colored according to the interface velocity v, demonstrated on cutouts of the length of 3.5 mm

for (a, b) series 1 and (¢, d) series 2.

4.3 Impact of temporal resolution

To assess the impact of temporal resolution on the mod-
eled decrease in SSA, we performed simulations with the
time step refined down to the time interval between two
#CT images, namely 8 h. Based on results from the previ-
ous subsection, the simulations for the fine temporal resolu-

tion were carried out for the condensation coefficients “?:gtes 1
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and a::rsitesz that were obtained by RMSE optimization of the

coarse-resolution modeling. The results are given in Fig. 5.
For series 1, the fine-resolution curve essentially coincides
with the coarse-resolution one. The differences are slightly
enhanced for series 2, where the fine-resolution curve lies
slightly above the coarse-resolution one. The good agree-
ment between the coarse-resolution and the fine-resolution
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Figure 4. Time evolution of the SSA s, experimental and modeled, with a varying condensation coefficient « for (a) series 1 and (b) series

2. (¢) RMSE for both series.
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Figure 5. The time evolution of the SSA s for both series with
coarse and fine temporal resolution for the best previously found

best best
values a2 and orgs o

simulations suggests that the coarse time step used in the pre-
vious section is sufficient to estimate the optimal « values.
These modeled SSA differences due to different tempo-
ral resolutions can now be further assessed through the er-
ror metric from Eq. (25). To this end, we fix the values of
o to the optimal values found in the previous section and
compute the SSA evolution for various temporal resolutions.
We choose different numbers of time steps N such that our
model provides the time evolution of the SSA s(#,) with
n=1, 2, ..., N for different temporal resolutions, A and
A’, where A =1t5/(N —1) (cf. Fig. 6a). On the one hand,
this allows us to calculate the error metric from Eq. (25) us-
ing the model results alone. The results are shown in Fig. 6b

The Cryosphere, 18, 1653-1668, 2024

as solid markers for the two series. On the other hand, the
error metric can also be independently estimated using the
stochastic error model from Eq. (26) for the given variance
o . Fitting the variance using the least-squares method on the
modeled data leads to values og; = 0.0007 and 0.0006 for se-
ries 1 and 2, respectively, and the results are shown in Fig. 6b
as lines. These values are of the same order of magnitude
as the variance computed as §/(2s) from the measurements,
which is opes = 0.0005 and 0.0007 for series 1 and 2, re-
spectively. Both estimations of the impact of the temporal
resolution on the error metric are in reasonable agreement.
Series 2 shows a significant difference in error between the
coarsest and the finest temporal resolutions, both from sim-
ulations (red markers) and according to the nwCT data (red
line). On the contrary, the simulation-based estimation of se-
ries 1 (blue markers) does not drop as much for the finest
temporal resolutions. This comes from the fact that the mod-
eled SSA evolutions using our finest and second-finest tem-
poral resolution substantially differ. Overall, the usage of the
error metric indicates that the temporal resolution’s impact
on the SSA evolution remains relatively small, with errors
below 1 %.

4.4 Signatures of a transition in « during TGM

Since we obtain a good agreement between experimental
and modeled data for series 1 only in the initial stage, ad-
ditional simulations were conducted to explore this further.
As shown in previous research (see Fig. 6 in Krol and
Lowe, 2018), series 1 undergoes a morphological transition
at around ¢ ~ 160 h, where up-facing and down-facing sur-
faces can be morphologically distinguished by their curva-
ture distributions. From this time on, the second moment
H? of up-facing and down-facing surfaces split up to follow
a different dynamic. Such behavior during TGM is known
from other work (Calonne et al., 2014a; Granger et al., 2021)
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Figure 6. (a) Different temporal resolutions of series 1 and 2. (b) The corresponding temporal resolution error ¢ calculated via Egs. (25) and

(26).

and reflects the predominant emergence of facets on down-
facing surfaces while the up-facing (sublimating) surfaces re-
main rounded. Here, we show that this morphological tran-
sition during TGM is consistent with a transition in the ef-
fective condensation coefficient « that governs the SSA de-
cay. To reveal the different kinetic behavior of series 1 in the
initial and final stages, we set the transition to 7 (#,),n > 20
—1i.e., t =160h — and performed independent optimization
of the condensation coefficient. Very good agreement with
the coefficient of determination R? = 0.99 is achieved when
the condensation coefficient is set to o = 10~ for the final
stage. The results for the optimal parameters are shown in
Fig. 7a.

While the transition is also present in series 2 (Fig. 6 in
Krol and Lowe, 2018), it occurs already very early in the time
series after ¢ & 24 h; see Fig. 7b. This is consistent with the
observation that only one value of « is sufficient to match the
measured data for series 2. Since the initial stage in series 2
is subject to higher fluctuations, an independent optimization
of another « after a few time steps is inconclusive. Overall,
this leads to the slightly reduced coefficient of determination,
R? =0.95, for series 2. Figure 7 summarizes the best possi-
ble match we obtained for the SSA in the highest resolution
within the developed method.

5 Discussion
5.1 Modeling the SSA evolution from first principles

We set up a numerical model that can simulate the evolution
of one of snow’s most fundamental microstructural param-
eters, the SSA, from 3D uCT images. The model is based
on the established theoretical description of snow metamor-
phism through coupled heat and mass diffusions at the pore
scale (Kaempfer and Plapp, 2009; Calonne et al., 2014b).
The solution of the diffusion problem thereby extends pre-
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vious work characterizing TGM from pCT images (Flin and
Brzoska, 2008; Pinzer et al., 2012; Krol and Loéwe, 2016),
where vapor fluxes were estimated only within the assump-
tion of local equilibrium at the interface. Under this assump-
tion, fluxes can be estimated from temperature fields and cur-
vatures alone without explicitly solving the vapor equation.
Our diffusion model is essentially physically equivalent to
Kaempfer and Plapp (2009) in the steady-state limit and has
been used previously (Fourteau et al., 2021a).

The actual novelty of our work is the combination of the
numerical solution of the heat and mass diffusions with the
exact surface area evolution equation (Krol and Lowe, 2018).
This combination allows us to rigorously validate the SSA
dynamics without explicitly evolving the ice—air interface in
3D space. This approach is thus complementary to 4D mi-
crostructure evolution models such as those inKaempfer and
Plapp (2009) or Bouvet et al. (2022). The advantage of in-
cluding the surface area equation (Eq. 9) in the analysis is
the possibility of isolating the relevant growth rate v, H for
either constructing a stochastic error analysis (Sect. 3.4) or
validating with analytical results (Sect. 3.5).

The model still requires considerable numerical resources,
including the volume meshing of the microstructure, the FE
solution of heat and mass diffusion equations taking into ac-
count kinetic effects of crystal growth, the extraction of the
interface velocity v, from the vapor field, and the subsequent
integration of the surface area equation. Nevertheless, we
were able to reproduce the decay of the SSA during TGM
for the first time from “first principles”, i.e., using a physical
model and the actual microstructure without adjusting free
parameters (in contrast to Legagneux et al., 2004; Domine
et al., 2007; and Taillandier et al., 2007). The only unknown
(physical) parameter in the model is the condensation coeffi-
cient, which characterizes vapor deposition and sublimation
kinetics.
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Figure 7. Comparison of experimental and modeled SSA time evolution. (a) Series 1 with
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5.2 The condensation coefficient o

We have demonstrated that the SSA evolution in the model is
highly sensitive to the condensation coefficient « (cf. Fig. 4).
The best agreement (cf. Fig. 7) is obtained for values in the
range 1072 < a < 107! (slightly different for the two time
series) that fall in the intermediate range (Fourteau et al.,
2021a) of possible values. This intermediate range of kinet-
ics is compatible with neither the assumption of slow kinetics
underlying the homogenization from Calonne et al. (2014b)
nor the assumption of infinitely fast kinetics, which was pre-
viously used to compute v,, from local temperature gradi-
ents (Krol and Lowe, 2016). While infinitely fast kinetics
was already suggested to be inconsistent with the present
experimental data sets (Krol and Lowe, 2018), this is now
confirmed here from the estimated range for the values of
a. From these results, we conclude that precise information
about « is essential and that modeling the SSA during TGM
solely using geometry and temperatures/gradients while ne-
glecting kinetic effects (Flanner and Zender, 2006) cannot be
justified.

It is well known that « is difficult to measure experimen-
tally. This is explained in Libbrecht (2005) and can be eas-
ily understood from Fig. 2c. When « is commonly mea-
sured through the inversion of interface velocity v, data,
the saturation form of the curve for the growth rate v, H as
a function of « implies significant uncertainties in « even
for minor errors in the growth rate in the saturation region,
where diffusion dominates. Our methodology can be con-
sidered to be a new (but similar) possibility of retrieving o
by comparing simulated SSA evolution curves with exper-
imental ones. From the reasoning given above, a high un-
certainty should be expected. Surprisingly, the optimization
(Fig. 4) reveals a rather sharp minimum. A similar proce-
dure for obtaining o from the comparison of measured and
modeled SSA curves was recently suggested by Bouvet et al.
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(2022), where a value of @ ~ 9.8 x 10~* was obtained from
a comparison of a phase field model with experimental data
in isothermal metamorphism. The latter work put forward an
interesting alternative route to the optimization of o from ex-
perimental data by means of dimensional analysis. So, in-
stead of conducting many simulations of different values of
a (as done here), the same results could be obtained through
non-dimensionalization and a single simulation. However,
the temperature gradient case considered here is governed by
two different timescales instead of only one in the isothermal
case (Bouvet et al., 2022), which renders this approach less
straightforward in our case. When comparing our results to
other data, we see that the obtained values of 10~'and 10713
for series 1 and of 107223 for series 2 lie in the commonly
found range of 107> <« < 10™! (Libbrecht and Rickerby,
2013), which is also used by Kaempfer and Plapp (2009).
They are slightly higher than but of a similar order of magni-
tude to those reported in Fourteau et al. (2021a) and Bouvet
et al. (2022). In contrast, the condensation coefficient from
Jafari et al. (2020) translates to o ~ 5 x 10~7, which is sig-
nificantly below this range.

In addition to the fact that both experimental series are
apparently governed by a different condensation coefficient
(Fig. 4), we provide evidence (Fig. 7) that the condensation
coefficient may even change during a single experiment. To
comprehend this finding, we recall that in snow, different
parts of the ice—air interface belong to different crystallo-
graphic orientations and habits (rounded vs. faceted). Both
have different attachment mechanisms and, therefore, differ-
ent values of o (Libbrecht, 2005). Using a single, constant
value of « that does not vary over the surface (as done here)
must be therefore understood as an effective kinetic coeffi-
cient. This effective coefficient can capture actual microscale
variations in « since a very good agreement for the SSA (as
an integral property) is still obtained. It is quite remarkable
that despite large variations in the condensation coefficient
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at the microscale, their collective behavior can be appropri-
ately described through the use of a single « value. Indeed,
in principle, the assumption of a constant « in Eq. (15) must
be questioned on physical grounds. On facets, one expects
that « is significantly reduced by orders of magnitude with a
non-linear dependence on the ambient vapor field/supersatu-
ration (Saito, 1996). Since facets cover only a fraction of the
surface, this may explain why only a moderate drop in the
effective o values (Fig. 7) is observed instead. Further sub-
stantiation of this hypothesis in future work is feasible even
without crystal orientation measurements, which were, for
instance, utilized in Granger et al. (2021). The surface area
evolution equation (Eq. 9) and the pore-scale diffusion model
can be easily extended to deal with spatially varying conden-
sation coefficients on the ice—air interface and corresponding
surface area sub-classes (e.g., up-facing and down-facing).
Such a setup would allow us to validate the hypothesis for
the condensation coefficient transition here. It would then be
beneficial to include higher-order interfacial properties like
H and H? explicitly in the validation. This is, however, at
the cost of evaluating higher-order rate terms.

5.3 Propagation of measurement errors

Our analysis has shown why high-quality uCT data are cru-
cial for our methodology. The complex numerical workflow
contains several sources of errors that may affect the pre-
dicted SSA evolution. First, experimental input data have a
limited spatial and temporal resolution, which leads to miss-
ing structural and interface correlations between two consec-
utive images. However, with a different experimental setup,
such as in Calonne et al. (2015), a higher spatial resolution
may be achieved. Second, the volumes of interest considered
here could be larger, in particular for series 2. This size might
lead to some non-representativeness issues and small fluctu-
ations in the measured SSA. This could explain the slightly
noisy nature of the experimental parameter curves in series
2 compared to series 1. Third, all involved image analysis
and simulation procedures come with additional numerical
errors. While some uncertainties can be well controlled and
assessed by testing the numerical workflow against analyti-
cal solutions (cf. Fig. 2), the existence of remaining errors is
evident.

To address these errors and their impact on SSA modeling,
we have exploited the fact that the explicit SSA representa-
tion allows us to construct a stochastic error model (Sect. 3).
This model predicts how the combination of temporal resolu-
tion A, observation time ¢, and methodological errors (sub-
sumed in the variance o of the uCT comparison data) af-
fects the SSA prediction. The stochastic model is reasonably
consistent with the observed convergence of the predictions
under reduction in the time step (Fig. 6). The fact that er-
rors can be quantitatively addressed even without knowing
the true SSA is facilitated by the representation of the SSA
as a differential equation (Eq. 9). In the future, more sophisti-
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cated stochastic models should be envisaged and constructed
from Eq. (9), which will further help to distinguish method-
ological noise and physics in the derived SSA dynamics.

5.4 Limitations and perspectives

Regarding model limitations other than the effective treat-
ment of the condensation coefficient approach outlined
above, we neglected the latent heat term in the interface con-
dition for the temperature equation (Eq. 6). This leads to a
slightly simpler numerical situation where heat and vapor
are coupled in only one way, and the heat diffusion equa-
tion can be solved in advance. This strategy reduces the nu-
merical cost of the method and facilitates the convergence
of the iterative solver used in the FE software. Despite this
simplification, we still observe that the vapor solver had is-
sues to converge for a few microstructures, which explains a
few missing points in the modeled time series (e.g., Fig. 5).
The convergence of the FE simulations depends on the em-
ployed mesh and on the value of «. It could be facilitated
by improving the mesh quality or increasing the maximum
number of iterations. While this one-way coupling assump-
tion eases the numeric, it was previously shown (Fourteau
et al., 2021b) that for low-density or fast kinetics, latent heat
significantly contributes to the heat fluxes in snow and may
thus also impact the surface-averaged growth rate v, H. This
should be carefully investigated for low-density uCT time
series under TGM in the future, where the numerical solution
will become more demanding. In general, it would be advan-
tageous to extend the analysis to other data sets. Here, we
used only two TGM time series which have been well stud-
ied before (Kaempfer et al., 2005; Pinzer et al., 2012; Krol
and Lowe, 2018). The evaluation of high-resolution TGM ex-
periments with systematic variations in the control parame-
ters (microstructure, temperature, and temperature gradients)
would be desirable. This would allow us to parameterize the
relevant growth rate v, H from the control parameters, which
is the most promising way to proceed towards a physically
based SSA equation in snow cover models.

6 Conclusions

We have addressed the SSA evolution in TGM within a rigor-
ous framework that combines the surface area equation with
pore-scale heat and mass diffusion simulations. The com-
parison to experimental uCT data allowed us to estimate
effective condensation coefficients that led to good agree-
ment of the simulations with the measurements without fur-
ther adjustable parameters. This shows that the evolution of
SSA can be understood from the first principles of pore-scale
physics (diffusive heat and mass transports), provided that
the effective condensation coefficient « is well constrained.
While this is a considerable step in understanding TGM, our
results highlight the importance of independent estimates of
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the condensation coefficient in snow, which is indispensable
to proceeding towards physically based SSA parameteriza-
tions in snow cover models.

Code and data availability. We published simulation parameters
and outputs for this study on the data portal EnviDat, https://doi.
org/10.16904/envidat.492 (Braun et al., 2024).
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