Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-653-2023
https://doi.org/10.5194/tc-17-653-2023
Research article
 | 
09 Feb 2023
Research article |  | 09 Feb 2023

The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland

Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty

Related authors

Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021,https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022,https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Change in potential snowfall phenology: past, present, and future in Chinese Tianshan mountainous region, Central Asia
Xuemei Li, Xinyu Liu, Kaixin Zhao, and Lanhai Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-244,https://doi.org/10.5194/tc-2022-244, 2022
Revised manuscript accepted for TC
Short summary
Impact of measured and simulated tundra snowpack properties on heat transfer
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022,https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022,https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary

Cited articles

Abegg, B., Morin, S., Demiroglu, O. C., François, H., Rothleitner, M., and Strasser, U.: Overloaded! Critical revision and a new conceptual approach for snow indicators in ski tourism, Int. J. Biometeorol., 65, 701, https://doi.org/10.1007/s00484-020-01867-3, 2020. a, b, c
Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, https://doi.org/10.1002/joc.3370060607, 1986. a, b
Alexandersson, H. and Moberg, A.: HOMOGENIZATION OF SWEDISH TEMPERATURE DATA. PART I: HOMOGENEITY TEST FOR LINEAR TRENDS, Int. J. Climatol., 17, 25–34, https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J, 1997. a, b, c
Al-Rubaye, S., Maguire, M., and Bean, B.: Design Ground Snow Loads: Historical Perspective and State of the Art, J. Struct. Eng., 148, 03122001, https://doi.org/10.1061/(ASCE)ST.1943-541X.0003339, 2022. a
Armstrong, R. and Brun, E.: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, https://doi.org/10.3189/002214309788608741, 2008. a
Download
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.