Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-653-2023
https://doi.org/10.5194/tc-17-653-2023
Research article
 | 
09 Feb 2023
Research article |  | 09 Feb 2023

The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland

Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty

Related authors

Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021,https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024,https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Characterization of non-Gaussianity in the snow distributions of various landscapes
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024,https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024,https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024,https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary

Cited articles

Abegg, B., Morin, S., Demiroglu, O. C., François, H., Rothleitner, M., and Strasser, U.: Overloaded! Critical revision and a new conceptual approach for snow indicators in ski tourism, Int. J. Biometeorol., 65, 701, https://doi.org/10.1007/s00484-020-01867-3, 2020. a, b, c
Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, https://doi.org/10.1002/joc.3370060607, 1986. a, b
Alexandersson, H. and Moberg, A.: HOMOGENIZATION OF SWEDISH TEMPERATURE DATA. PART I: HOMOGENEITY TEST FOR LINEAR TRENDS, Int. J. Climatol., 17, 25–34, https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J, 1997. a, b, c
Al-Rubaye, S., Maguire, M., and Bean, B.: Design Ground Snow Loads: Historical Perspective and State of the Art, J. Struct. Eng., 148, 03122001, https://doi.org/10.1061/(ASCE)ST.1943-541X.0003339, 2022. a
Armstrong, R. and Brun, E.: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, https://doi.org/10.3189/002214309788608741, 2008. a
Download
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.