Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4661-2023
https://doi.org/10.5194/tc-17-4661-2023
Research article
 | 
07 Nov 2023
Research article |  | 07 Nov 2023

Choice of observation type affects Bayesian calibration of Greenland Ice Sheet model simulations

Denis Felikson, Sophie Nowicki, Isabel Nias, Beata Csatho, Anton Schenk, Michael J. Croteau, and Bryant Loomis

Related authors

Outlet Glacier Seasonal Terminus Prediction Using Interpretable Machine Learning
Kevin Shionalyn, Ginny Catania, Daniel Trugman, Michael Shahin, Leigh Stearns, and Denis Felikson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3483,https://doi.org/10.5194/egusphere-2025-3483, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
ICESat-2 surface elevation assessment with kinematic GPS and static GNSS near the ice divide in Greenland
Derek J. Pickell, Robert L. Hawley, Denis Felikson, and Jamie C. Good
EGUsphere, https://doi.org/10.5194/egusphere-2025-2683,https://doi.org/10.5194/egusphere-2025-2683, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Estimation of the state and parameters in ice sheet model using an ensemble Kalman filter and Observing System Simulation Experiments
Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-301,https://doi.org/10.5194/egusphere-2025-301, 2025
Short summary
GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland Ice Sheet
Joseph A. MacGregor, Winnie Chu, William T. Colgan, Mark A. Fahnestock, Denis Felikson, Nanna B. Karlsson, Sophie M. J. Nowicki, and Michael Studinger
The Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022,https://doi.org/10.5194/tc-16-3033-2022, 2022
Short summary
Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change
Christian J. Taubenberger, Denis Felikson, and Thomas Neumann
The Cryosphere, 16, 1341–1348, https://doi.org/10.5194/tc-16-1341-2022,https://doi.org/10.5194/tc-16-1341-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Bias in modeled Greenland Ice Sheet melt revealed by ASCAT
Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard
The Cryosphere, 19, 2963–2981, https://doi.org/10.5194/tc-19-2963-2025,https://doi.org/10.5194/tc-19-2963-2025, 2025
Short summary
Brief communication: Storstrømmen Glacier, northeastern Greenland, primed for end-of-decade surge
Jonas K. Andersen, Rasmus P. Meyer, Flora S. Huiban, Mads L. Dømgaard, Romain Millan, and Anders A. Bjørk
The Cryosphere, 19, 1717–1724, https://doi.org/10.5194/tc-19-1717-2025,https://doi.org/10.5194/tc-19-1717-2025, 2025
Short summary
Exploring the Greenland Ice Sheet's response to future atmospheric warming-threshold scenarios over 200 years
Alison Delhasse, Christoph Kittel, and Johanna Beckmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-709,https://doi.org/10.5194/egusphere-2025-709, 2025
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
A comparison of supraglacial meltwater features throughout contrasting melt seasons: southwest Greenland
Emily Glen, Amber Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Olivia Atkins, Brice Noël, and Malcolm McMillan
The Cryosphere, 19, 1047–1066, https://doi.org/10.5194/tc-19-1047-2025,https://doi.org/10.5194/tc-19-1047-2025, 2025
Short summary

Cited articles

Aschwanden, A. and Brinkerhoff, D. J.: Calibrated Mass Loss Predictions for the Greenland Ice Sheet, Geophys. Res. Lett., 49, e2022GL099058, https://doi.org/10.1029/2022GL099058, 2022. a, b
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R. H., and Khan, S. A.: Contribution of the Greenland Ice Sheet to Sea Level over the next Millennium, Science Advances, 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief Communication: A Roadmap towards Credible Projections of Ice Sheet Contribution to Sea Level, The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, 2021. a, b
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., and Larour, E. Y.: Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland, The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, 2016. a
Csatho, B. M., Schenk, A. F., van der Veen, C. J., Babonis, G., Duncan, K., Rezvanbehbahani, S., van den Broeke, M. R., Simonsen, S. B., Nagarajan, S., and van Angelen, J. H.: Laser Altimetry Reveals Complex Pattern of Greenland Ice Sheet Dynamics, P. Natl. Acad. Sci. USA, 111, 18478–18483, https://doi.org/10.1073/pnas.1411680112, 2014. a
Download
Short summary
We narrow the spread in model simulations of the Greenland Ice Sheet using velocity change, dynamic thickness change, and mass change observations. We find that the type of observation chosen can lead to significantly different calibrated probability distributions. Further work is required to understand how to best calibrate ensembles of ice sheet simulations because this will improve probability distributions of projected sea-level rise, which is crucial for coastal planning and adaptation.
Share