Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-3013-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3013-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic sea ice radar freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: toward sea ice thickness observation from 1995 to 2021
Marion Bocquet
CORRESPONDING AUTHOR
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Collecte Localisation Satellites (CLS), Toulouse, France
Sara Fleury
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Fanny Piras
Collecte Localisation Satellites (CLS), Toulouse, France
Eero Rinne
Marine Research, Finnish Meteorological Institute, Helsinki, Finland
University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway
Heidi Sallila
Marine Research, Finnish Meteorological Institute, Helsinki, Finland
Florent Garnier
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Frédérique Rémy
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Related authors
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Maya Raghunath Suryawanshi, Malcolm McMillan, Jennifer Maddalena, Fanny Piras, Jérémie Aublanc, Jean-Alexis Daguzé, Clara Grau, and Qi Huang
The Cryosphere, 19, 2855–2880, https://doi.org/10.5194/tc-19-2855-2025, https://doi.org/10.5194/tc-19-2855-2025, 2025
Short summary
Short summary
Increasing melting rates of the polar ice sheets are contributing more and more to sea level rise. Due to the remoteness and expanse of ice sheets, these changes are mainly observed using satellites. However, the accuracy of these measurements depends on the processing of these datasets. Here we use advanced algorithms to provide improved historical ice sheet elevation measurements, derived from satellite altimeters flying between 1991 and 2012, which will benefit cryospheric applications.
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Renée M. Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut V. Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian B. Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ G. D. Casal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2854, https://doi.org/10.5194/egusphere-2024-2854, 2024
Short summary
Short summary
In December 2022, an airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea useful for evaluating microwave penetration. We found limited snow penetration at Ka- and Ku-bands, with significant contributions from the air-snow interface, contradicting traditional assumptions. These findings challenge current methods for comparing air- and spaceborne altimeter estimates of sea ice.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Alexandru Gegiuc, Juha Karvonen, Jouni Vainio, Eero Rinne, Roman Bednarik, and Marko Mäkynen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-8, https://doi.org/10.5194/tc-2022-8, 2022
Publication in TC not foreseen
Short summary
Short summary
Current users of operational ice charts call for quantitative uncertainty information, which the current ice charts lack. In this work we demonstrate for the first time the use of eye tracking methodology as a non-invasive way to identify elements behind uncertainties typically introduced during the process of visual mapping of sea ice information in satellite radar imagery. Uncertainty information would increase reliability of the manually produced ice charts and increase navigation safety.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Yeray Santana-Falcón, Pierre Brasseur, Jean Michel Brankart, and Florent Garnier
Ocean Sci., 16, 1297–1315, https://doi.org/10.5194/os-16-1297-2020, https://doi.org/10.5194/os-16-1297-2020, 2020
Short summary
Short summary
Data assimilation is the most comprehensive strategy to estimate the biogeochemical state of the ocean. Here, surface Chl a data are daily assimilated into a 24-member NEMO–PISCES ensemble configuration to implement a complete 4D assimilation system. Results show the assimilation increases the skills of the ensemble, though a regional diagnosis suggests that the description of model and observation uncertainties needs to be refined according to the biogeochemical characteristics of each region.
Cited articles
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. a
Belter, H. J., Janout, M. A., Hölemann, J. A., and Krumpen, T.: Daily mean sea
ice draft from moored upward-looking Acoustic Doppler Current Profilers
(ADCPs) in the Laptev Sea from 2003 to 2016, PANGAEA [data set] https://doi.org/10.1594/PANGAEA.912927,
2020. a, b
Bocquet, M. and Fleury, S.: Arctic sea ice radar freeboard from ERS-2, Envisat
and CryoSat-2, Zenodo [data set], https://doi.org/10.5281/zenodo.7712503, 2023. a
Brockley, D. J., Baker, S., Femenias, P., Martinez, B., Massmann, F.-H., Otten,
M., Paul, F., Picard, B., Prandi, P., Roca, M., Rudenko, S., Scharroo, R.,
and Visser, P.: REAPER: Reprocessing 12 Years of ERS-1 and ERS-2
Altimeters and Microwave Radiometer Data, IEEE T.
Geosci. Remote, 55, 5506–5514,
https://doi.org/10.1109/TGRS.2017.2709343, 2017. a, b
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.:
EASE-Grid 2.0: Incremental but Significant Improvements for
Earth-Gridded Data Sets, ISPRS Int. J.
Geo-Inf., 1, 32–45, https://doi.org/10.3390/ijgi1010032, 2012. a
Calafat, F., Cipollini, P., Bouffard, J., Snaith, H., and Féménias, P.:
Evaluation of new CryoSat-2 products over the ocean, Remote Sens.
Environ., 191, 131–144, https://doi.org/10.1016/j.rse.2017.01.009,
2017. a
Carrere, L., Lyard, F., Cancet, M., and Guillot, A.: FES 2014, a new tidal
model on the global ocean with enhanced accuracy in shallow seas and in the
Arctic region, EGU General Assembly, 17, p. 5481, Vienna, Austria,
https://meetingorganizer.copernicus.org/EGU2015/EGU2015-5481-1.pdf (last access: 19 July 2023), 2015. a
Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H. J.: Sea Ice
Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive
Microwave Data, Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.5067/8GQ8LZQVL0VL, 1996. a, b
Chelton, D. B., Walsh, E. J., and MacArthur, J. L.: Pulse Compression and
Sea Level Tracking in Satellite Altimetry, J. Atmos.
Ocean. Tech., 6, 407–438,
https://doi.org/10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2, 1989. a
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/ZENODO.1243862, 2021. a
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science
communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020. a
Drucker, R., Martin, S., and Moritz, R.: Observations of ice thickness and
frazil ice in the St. Lawrence Island polynya from satellite imagery, upward
looking sonar, and salinity/temperature moorings, J. Geophys. Res.-Oceans, 108, 3149,
https://doi.org/10.1029/2001JC001213, 2003. a
Environment Canada: Ice Thickness Program Collection, 1947-2002, https://open.canada.ca/data/en/dataset/054cb024-e0bc-43ae-90c7-d9e23517ab8e, last access: 28 June 2021a. a
Environment Canada: Ice Thickness Program Collection, 2002-, https://open.canada.ca/data/en/dataset/8b624b7b-2e8f-436b-b9bd-f31c2e6613cf, last access: 28 June 2021b. a
European Space Agency: 2014, ERS-1/2 Radar Altimeter REAPER Sensor Geophysical Data Record – SGDR [ERS_ALT_2S], Version 1.08, https://doi.org/10.57780/ers-07698ce, 2014. a
European Space Agency: RA-2 Geophysical Data Record, Version 3.0, ESA [data set], https://doi.org/10.5270/EN1-ajb696a, 2018. a
European Space Agency: L1b SAR Precise Orbit, Baseline D, ESA [data set], https://doi.org/10.5270/CR2-2cnblvi, 2019a. a
European Space Agency: L1b SARin Precise Orbit, Baseline D, ESA [data set], https://doi.org/10.5270/CR2-u3805kw, 2019b. a
Garnier, F., Fleury, S., Garric, G., Bouffard, J., Tsamados, M., Laforge, A., Bocquet, M., Fredensborg Hansen, R. M., and Remy, F.: Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements, The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, 2021. a
Giles, K. A., Laxon, S. W., and Worby, A. P.: Antarctic sea ice elevation from
satellite radar altimetry, Geophys. Res. Lett., 35, L03503,
https://doi.org/10.1029/2007GL031572, 2008. a
Guerreiro, K. and Fleury, S.:
Sea-Ice Thickness North Hemisphere Envisat, CTOH [data set], https://doi.org/10.6096/CTOH_SIT_NH_ENV_2017_01,
2022. a
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, 2017. a, b, c, d, e, f, g, h, i, j
Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling, A.:
Helicopter-borne measurements of sea ice thickness, using a small and
lightweight, digital EM system, J. Appl. Geophys., 67, 234–241,
https://doi.org/10.1016/j.jappgeo.2008.05.005, 2009. a
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014. a
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change Initiative
(Sea_Ice_cci): Northern hemisphere sea ice thickness from the Envisat
satellite on a monthly grid (L3C), v2.0, Centre for Environmental Data
Analysis (CEDA) [data set], https://doi.org/10.5285/F4C34F4F0F1D4D0DA06D771F6972F180, 2018. a, b
Kendall, M. G.: Rank correlation methods, Oxford University Press,
ISBN 10: 0195208374, ISBN 13 9780195208375, 1990. a
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization,
3rd International Conference for Learning Representations, San Diego, 2015,
https://doi.org/10.48550/arXiv.1412.6980, 2014. a
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack,
E. C., McLaughlin, F. A., and Timmermans, M.-L.: Deterioration of perennial
sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the
oceanic freshwater cycle: SEA ICE IN THE BG FROM 2003 TO 2012,
J. Geophys. Res.-Oceans, 119, 1271–1305,
https://doi.org/10.1002/2013JC008999, 2014. a, b, c
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013. a, b
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014. a, b
Kwok, R.: Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice
freeboard, Geophys. Res. Lett., 41, 5014–5020,
https://doi.org/10.1002/2014GL060993, 2014. a
Kwok, R. and Haas, C.: Effects of radar side-lobes on snow depth retrievals
from Operation IceBridge, J. Glaciol., 61, 576–584,
https://doi.org/10.3189/2015JoG14J229, 2015. a
Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L., King, J., Howell, S., Webster, M. A., Paden, J., Leuschen, C., MacGregor, J. A., Richter-Menge, J., Harbeck, J., and Tschudi, M.: Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge, The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017, 2017. a
Laforge, A., Fleury, S., Dinardo, S., Garnier, F., Remy, F., Benveniste, J.,
Bouffard, J., and Verley, J.: Toward improved sea ice freeboard observation
with SAR altimetry using the physical retracker SAMOSA+, Adv.
Space Res., 68, 732–745, https://doi.org/10.1016/j.asr.2020.02.001, 2020. a, b
Landy, J. C., Tsamados, M., and Scharien, R. K.: A Facet-Based Numerical
Model for Simulating SAR Altimeter Echoes From Heterogeneous
Sea Ice Surfaces, IEEE T. Geosci. Remote,
57, 4164–4180, https://doi.org/10.1109/TGRS.2018.2889763, 2019. a
Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea Ice
Roughness Overlooked as a Key Source of Uncertainty in
CryoSat-2 Ice Freeboard Retrievals, J. Geophys.
Res.-Oceans, 125, e2019JC015820, https://doi.org/10.1029/2019JC015820, 2020 a, b, c, d
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell,
S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S.,
Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness
record from CryoSat-2, Nature, 609, 517–522,
https://doi.org/10.1038/s41586-022-05058-5, 2022. a
Laxon, S.: Sea ice altimeter processing scheme at the EODC, Int.
J. Remote Sens., 15, 915–924, https://doi.org/10.1080/01431169408954124,
1994. a, b
Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
thickness in the Arctic region, Nature,
425, 947–950, https://doi.org/10.1038/nature02050,
2003. a, b, c
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015. a
Liston, G., Stroeve, J., and Itkin, P.: Lagrangian Snow Distributions for
Sea-Ice Applications, National Snow and Ice Data Center [data set], https://doi.org/10.5067/27A0P5M6LZBI,
2020a. a, b
Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen,
S. H., Reinking, A. K., and Elder, K.: A Lagrangian Snow-Evolution System
for Sea-Ice Applications (SnowModel-LG): Part I – Model Description, J. Geophys. Res.-Oceans,
125, e2019JC015913, https://doi.org/10.1029/2019JC015913, 2020b. a
Mallett, R. D. C., Lawrence, I. R., Stroeve, J. C., Landy, J. C., and Tsamados, M.: Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates, The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, 2020. a
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945. a
Meier, W. N., Hovelsrud, G. K., van Oort, B. E., Key, J. R., Kovacs, K. M.,
Michel, C., Haas, C., Granskog, M. A., Gerland, S., Perovich, D. K.,
Makshtas, A., and Reist, J. D.: Arctic sea ice in transformation: A review
of recent observed changes and impacts on biology and human activity:
ARCTIC SEA ICE: REVIEW OF RECENT CHANGES, Rev.
Geophys., 52, 185–217, https://doi.org/10.1002/2013RG000431, 2014. a
Meier, W. N., P. D., Farrell, S., Haas, C., Hendricks, S., Petty, A., Webster,
M., Divine, D., Gerland, S., Kaleschke, L., Ricker, R., Steer, A.,
Tian-Kunze, X., Tschudi, M., and Wood, K.: NOAA Arctic Report Card
2021: Sea Ice, United States,
National Oceanic and Atmospheric Administration, Office of Oceanic and
Atmospheric Research, Global Ocean Monitoring and Observing (GOMO) Program,https://doi.org/10.25923/Y2WD-FN85,
2021. a
Melling, H.: Ice Draft and Ice Velocity Data in the Beaufort Sea, 1990–2003,
Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N58913S6, 2008. a, b, c
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S.,
King, J., Ricker, R., and Else, B.: Effect of Snow Salinity on
CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements:
Sea Ice Brine-Snow Effect on CryoSat-2, Geophys. Res.
Lett., 44, 10419–10426, https://doi.org/10.1002/2017GL074506, 2017. a
National Snow and Ice Data Center: Submarine Upward Looking Sonar Ice Draft
Profile Data and Statistics, Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N54Q7RWK, 2006. a, b
Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, 2018. a, b, c, d, e, f
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a, b
Poisson, J.-C., Quartly, G. D., Kurekin, A. A., Thibaut, P., Hoang, D., and
Nencioli, F.: Development of an ENVISAT Altimetry Processor Providing
Sea Level Continuity Between Open Ocean and Arctic Leads,
IEEE T. Geosci. Remote, 56, 5299–5319,
https://doi.org/10.1109/TGRS.2018.2813061, 2018. a, b
Raney, R.: A delay/Doppler radar altimeter for ice sheet monitoring, in: 1995
International Geoscience and Remote Sensing Symposium, IGARSS
'95, Quantitative Remote Sensing for Science and Applications,
IEEE, Firenze, Italy, vol. 2, 862–864, https://doi.org/10.1109/IGARSS.1995.521080,
1995. a
Rheinlænder, J. W., Davy, R., Ólason, E., Rampal, P., Spensberger, C.,
Williams, T. D., Korosov, A., and Spengler, T.: Driving Mechanisms of an
Extreme Winter Sea Ice Breakup Event in the Beaufort Sea,
Geophys. Res. Lett., 49, e2022GL099024, https://doi.org/10.1029/2022GL099024, 2022. a
Ricker, R., Hendricks, S., Perovich, D. K., Helm, V., and Gerdes, R.: Impact of
snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An
observational approach with buoy data, Geophys. Res. Lett., 42,
4447–4455, https://doi.org/10.1002/2015GL064081, 2015. a
Roca, M., Laxon, S., and Zelli, C.: The EnviSat RA-2 Instrument Design and
Tracking Performance, IEEE T. Geosci. Remote, 47,
3489–3506, https://doi.org/10.1109/TGRS.2009.2020793, 2009. a, b
Rothrock, D. A. and Wensnahan, M.: The Accuracy of Sea Ice Drafts Measured from
U.S. Navy Submarines, J. Atmos. Ocean. Tech., 24, 1936–1949, https://doi.org/10.1175/JTECH2097.1, 2007. a
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, 1968. a
Stammer, D.: Satellite altimetry over oceans and land surfaces, Earth
observation of global changes, 2018. a
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018. a, b, c
Stroeve, J., Liston, G. E., Buzzard, S., Zhou, L., Mallett, R., Barrett, A.,
Tschudi, M., Tsamados, M., Itkin, P., and Stewart, J. S.: A Lagrangian
Snow Evolution System for Sea Ice Applications
(SnowModel-LG): Part II – Analyses, J. Geophys.
Res.-Oceans, 125, e2019JC015900, https://doi.org/10.1029/2019JC015900, 2020. a
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic’s rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1,
2012. a
Theil, H.: A rank-invariant method of linear and polynomial regression
analysis, Stichting Mathematisch Centrum, Statistische Afdeling, 12, 467–482, 1950. a
Tilling, R., Ridout, A., and Shepherd, A.: Assessing the Impact of Lead and
Floe Sampling on Arctic Sea Ice Thickness Estimates from Envisat and
CryoSat-2, J. Geophys. Res.-Oceans, 124, 7473–7485,
https://doi.org/10.1029/2019JC015232, 2019.
a, b, c
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanikand, J.:
EASE-Grid Sea Ice Age, National Snow and Ice Data Center [data set], https://doi.org/10.5067/UTAV7490FEPB, 2019. a, b
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave remote sensing: Active
and passive, Volume 3 – From theory to applications, 3, https://doi.org/10.1017/S0016756800015831, 1986. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wadhams, P.: Arctic sea ice morphology and its measurement, Arctic
Technology and Policy, edited by: Dyer, I. and Chryssostomidis,
C., Hemisphere Publishing Corp., Washington, DC, 1984. a
Wadhams, P. and Horne, R. J.: An Analysis Of Ice Profiles Obtained
By Submarine Sonar In The Beaufort Sea, J. Glaciol.,
25, 401–424, https://doi.org/10.3189/S0022143000015264, 1980. a
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin,
N. N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea
Ice, J. Climate, 12, 1814–1829,
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999. a
Wensnahan, M.: Sea-ice draft from submarine-based sonar: Establishing a
consistent record from analog and digitally recorded data, Geophys.
Res. Lett., 32, L11502, https://doi.org/10.1029/2005GL022507, 2005. a
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen,
R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C.,
Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.:
CryoSat: A mission to determine the fluctuations in Earth’s land and
marine ice fields, Adv. Space Res., 37, 841–871, https://doi.org/10.1016/j.asr.2005.07.027, 2006. a, b, c, d, e, f, g
Witte, H. and Fahrbach, E.: AWI Moored ULS Data, Greenland Sea and Fram
Strait, 1991–2002, Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.7265/N5G15XSR, 2005. a, b
Yi, D. and Zwally, H. J.: Arctic Sea Ice Freeboard and Thickness,
Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.5067/SXJVJ3A2XIZT, 2009. a, b
Zwally, H. J., Yi, D., Kwok, R., and Zhao, Y.: ICESat measurements of sea ice
freeboard and estimates of sea ice thickness in the Weddell Sea, J. Geophys. Res., 113, C02S15, https://doi.org/10.1029/2007JC004284, 2008. a
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Sea ice has a large interannual variability, and studying its evolution requires long time...