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Abstract. Sea ice volume’s significant interannual variability
requires long-term series of observations to identify trends in
its evolution. Despite improvements in sea ice thickness es-
timations from altimetry during the past few years thanks to
CryoSat-2 and ICESat-2, former ESA radar altimetry mis-
sions such as the Environmental Satellite (Envisat) and es-
pecially the European Remote-Sensing Satellite (ERS-1 and
ERS-2) have remained under-exploited so far. Although so-
lutions have already been proposed to ensure continuity of
measurements between CryoSat-2 and Envisat, there is no
time series integrating ERS. The purpose of this study is to
extend the Arctic radar freeboard time series back to 1995.
The difficulty in handling ERS measurements comes from a
technical issue known as the pulse blurring effect, altering
the radar echoes over sea ice and the resulting surface height
estimates. Here we present and apply a correction for this
pulse blurring effect. To ensure consistency of the CryoSat-
2, Envisat and ERS-2 time series, a multiparameter neural-
network-based method to calibrate Envisat against CryoSat-
2 and ERS-2 against Envisat is presented. The calibration is
trained on the discrepancies observed between the altimeter
measurements during the mission-overlap periods and a set
of parameters characterizing the sea ice state. Monthly radar
freeboards are provided with uncertainty estimations based
on a Monte Carlo approach to propagate the uncertainties
all along the processing chain, including the neural network.
Comparisons of corrected radar freeboards during overlap
periods reveal good agreement between the missions, with

a mean bias of 0.30cm and a standard deviation of 9.7 cm
for Envisat and CryoSat-2 and a 0.20 cm bias and a stan-
dard deviation of 3.8 cm for ERS-2 and Envisat. The monthly
corrected radar freeboards obtained from Envisat and ERS-2
are then validated by comparison with several independent
datasets such as airborne, mooring, direct-measurement and
other altimeter products. Except for two datasets, compar-
isons lead to correlations ranging from 0.41 to 0.94 for En-
visat and from 0.60 to 0.74 for ERS-2. The study finally pro-
vides radar freeboard estimation for winters from 1995 to
2021 (from the ERS-2 mission to CryoSat-2).

1 Introduction

Several indicators illustrate the evolution of sea ice in re-
sponse to climate change. Arctic sea ice extent has strongly
decreased since the beginning of the satellite observation
era by radiometry (Stroeve et al., 2012; Meier et al., 2014;
Stroeve and Notz, 2018). The proportion of perennial ice
has decreased significantly since 1984: the amount halved
in April between 1984 and 2018 (Stroeve and Notz, 2018).
The end of summer 2021 had the second-lowest amount of
multiyear ice since 1985 (Meier et al., 2021). To improve
our knowledge and forecast its evolution, an additional di-
mension becomes crucial: the thickness. Thick and old ice
is disappearing and being replaced by younger, thin ice that
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has a higher mechanical sensitivity. Thin ice is more prone
to deformation (Stroeve and Notz, 2018) that induces area
changes and is more sensitive to climate hazards such as cy-
clones or strong winds (Rheinl@nder et al., 2022). Thickness
is a key parameter for sea ice study: it varies a lot accord-
ing to the regions and modulates the sea ice volume evolu-
tion in the Arctic Ocean (Landy et al., 2022). Various cam-
paigns have been carried out in the Arctic since the middle
of the 20th century to measure sea ice thickness (Lindsay
and Schweiger, 2013; Krishfield et al., 2014). However, these
space- and time-limited measurements do not allow conclu-
sions to be drawn from basin-scale sea ice volume variations.
A quasi-global approach is possible through satellite altime-
try, especially with radar altimetry, which is not impacted by
the cloud cover and whose missions have been continuous
since 1991.

Sea ice thickness estimation by spatial altimetry, in its
modern form, was introduced by Laxon (1994) and Peacock
and Laxon (2004) based on the freeboard methodology. The
radar freeboard is obtained by taking the difference between
the height measured above the floes and the height over leads
interpolated below the floes. The radar freeboard has to be
corrected for the radar signal slowdown within the snow layer
to retrieve the ice freeboard, which is the thickness of the
emerged part of the floe. Given the snow depth and the den-
sity of water, ice and snow, it is possible to derive the thick-
ness of the ice assuming hydrostatic equilibrium. Lead and
floe heights can be estimated using a heuristic retracker or,
more recently developed, physical retrackers (Kurtz et al.,
2014; Landy et al., 2019; Laforge et al., 2020). The imple-
mentation of this method requires the assumption that the
Ku-band radar wave completely penetrates the snow layer,
which is still widely discussed and is not the subject of a
definitive consensus (Ricker et al., 2014, 2015; Nandan et al.,
2017).

The launch of the CryoSat-2 (CS-2) mission featuring a
high-resolution synthetic aperture radar (SAR) mode has en-
abled important advances in the estimation of sea ice thick-
ness. The benefits are many: especially when compared with
altimeters from past missions (European Remote-Sensing
Satellite ERS-1 and ERS-2 and the Environmental Satellite —
Envisat) operating with older technology, the low-resolution
mode (LRM) has a larger surface footprint size, making
thickness estimation more difficult. To reconstruct Envisat
sea ice thickness estimation, Guerreiro et al. (2017), Paul
et al. (2018) and Tilling et al. (2019) relied on the differences
between Envisat and CS-2 during their common flight period
to be able to calibrate the Envisat freeboard. Getting back
to ERS missions, an additional problem coming from the in-
strument appears: the “pulse blurring” described in Peacock
(1998) and in Peacock and Laxon (2004). Laxon et al. (2003)
and Giles et al. (2008) published thereafter the first and last
ERS thickness estimations for the Arctic and Antarctic sea
ice so far (as a map averaging all the estimates of the different
winters over the whole flight period of ERS-1 and ERS-2).
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This study presents a method to recover a homogenous
time series of the Arctic sea ice radar freeboard back to
ERS-2 that is aimed for use in describing sea ice thickness
changes over the last few decades. To minimize inter-mission
bias along with the series, ERS-2 freeboard estimates are ad-
justed on Envisat radar freeboard estimates, which in turn
were previously adjusted on CryoSat-2, taking advantage of
the respective common flight periods. Consistency between
missions is ensured by using the same processing chain re-
gardless of the mission (before calibration), starting with the
chosen retracking algorithm: the empirical threshold first-
maximum retracker algorithm (Helm et al., 2014) with a
threshold of 50 % (TFMRAS5O0). Note that the term “radar
freeboard” refers to the TFMRASO0 radar freeboard in the KU
band for both the LRM and SAR modes (depending on the
mission). Since this LRM-TFMRASO0 radar freeboard will
be corrected to be consistent with CryoSat-2 and not conven-
tionally obtained by calculating the difference in the height
over floes and height over leads, it will be specified as neu-
ral network (NN) FBr, which stands for radar freeboard ad-
justed using the neural network. This study does not present
any new understanding concerning LRM waveform retrack-
ing on sea ice and does not draw any conclusions about
links between surface properties and TFMRAS0 FBr from
LRM but will focus only on recovering a long and homoge-
neous time series between different altimeter technologies.
We also present the method used to correct the ERS-2 mea-
surements for the effect of pulse blurring, which is a pre-
requisite for using ERS measurements over sea ice. The ad-
justment of LRM measurements on CryoSat-2 is performed
using machine learning based on the surface state of the ice
in Sect. 3. The associated uncertainties are derived using a
Monte Carlo approach. Section 4 compares the monthly En-
visat and ERS-2 radar freeboard data with various in situ,
spaceborne datasets or other altimetry products available dur-
ing this period. The time series is finally presented as a radar
volume time series with trend estimation, providing a first
overview of Arctic sea ice changes over the last 27 years.

2 Data
2.1 Satellite altimetry data
2.1.1 CryoSat-2

CryoSat-2 is an ESA altimeter mission launched in 2010.
With a nearly polar and geodetic orbit, it enables observa-
tions of up to 88° N, which makes it particularly adapted
for cryosphere observations. Additionally, CryoSat-2 incor-
porates nadir SAR and synthetic aperture radar interferomet-
ric (SARin) technologies (Wingham et al., 2006). The two
altimetry approaches exploit the Doppler capabilities of the
instrument to reduce the along-track footprint from several
kilometers to approximately 300 m compared to LRM (cor-
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responding to a reduction in the footprint area from 5 to
180 km?, Stammer, 2018). Increasing the along-track resolu-
tion of the aperture radar has led to considerable advances in
estimating sea ice thickness. For this study, we use SAR and
SARin data at 20 Hz from the ESA baseline-D L1b product.
We derive the radar freeboard for the 7 coldest Arctic months
(from October to April) of each year from November 2010 to
the present.

2.1.2 Envisat

The ESA’s Envisat mission was launched in 2002, reach-
ing latitudes of 81.5° N and 81.5° S. The satellite carried the
radar altimeter RA-2 (operating in LRM), with a high pulse-
repetition frequency (PRF) of 1795 Hz allowing a large num-
ber of measurements per second to be performed, resulting in
a better accuracy. The return pulses are averaged in batches
of 100 to constitute each waveform (Roca et al., 2009). RA-2
L1b version-3 products including waveforms provided by the
ESA are used in this analysis. Sea ice freeboard is computed
for the coldest 7 months of each year from October 2002 to
March 2012.

The surface illuminated by the satellite is significantly
larger in LRM than in synthetic aperture radar mode (SARM)
(by a factor of about 30). In addition, surface roughness de-
termines the size of the illuminated footprint in LRM; the
greater the roughness, the larger the footprint, whereas it
is constant in SARM (Chelton et al., 1989; Raney, 1995).
Therefore, surface roughness will have a greater effect on
LRM range retrieval than the more nadir-focused SAR tech-
niques (see Sect. 3.4 for more information). There is no
waveform model for sea ice to account for the effect of
roughness, and conventional retracking methods do not allow
relevant radar freeboard estimation using LRM information
alone. Our approach is to exploit these processing-mode dif-
ferences to derive an LRM-corrected freeboard. To this end,
we compare Envisat and CryoSat-2 datasets during the mis-
sion overlap period from November 2010 to March 2012 (see
Sect. 3.4).

2.1.3 European Remote-Sensing Satellite (ERS-2)

In the 1990s, the ESA launched two ERS satellites, ERS-1
in July 1991 and ERS-2 in April 1995. ERS-1 was able to
perform nominally until June 1996 and ERS-2 until Novem-
ber 2003. To extend the time series while ensuring continu-
ity with the Envisat mission, ERS-2 products from the ESA
Reaper project (Brockley et al., 2017) were used until July
2003. The ERS RA operated at a lower PRF than the En-
visat RA-2 (1020 Hz against 1795 Hz, respectively). Thus,
the 20 Hz waveforms are made up of 50 elementary echoes
instead of 100 for RA-2. This leads to a higher speckle noise
for ERS missions than for Envisat (see Sect. 3.5 for further
details).
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Another significant difference between RA and RA-2
comes from the tracker-board control loop that aims at cen-
tering the expected echo in the altimeter acquisition window.
The delay between the transmission and the reception of the
radar waveform depends on the vertical distance between the
altimeter and the Earth’s surface. This distance varies along
with the satellite orbit and the ground topography. The time
between the transmission of the radar wave and the open-
ing of the acquisition window must therefore be constantly
adapted (called the window delay (s) or the tracker range (m)
if this is within a time or a distance). The distance or range
between the altimeter and the measured surface is then equal
to the sum of the tracker range and the epoch, i.e., the po-
sition of the waveform in the window. Since a waveform is
an average of 50 individual pulses, it is important that each
pulse is correctly centered in the window (to be aligned with
the others). Otherwise, the resulting averaged 20 Hz wave-
forms will be blurred. This is unfortunately what happened to
ERS altimeters over sea-ice-covered surfaces (Peacock and
Laxon, 2004).

2.2 Ancillary data

Whether it is for the calculation of the radar freeboard itself,
the LRM calibration or the comparison of our results to in
situ data, we use various additional datasets. We present here
additional datasets that have been used for this purpose.

The sea ice concentration field is needed to restrain the
freeboard computation over a sea-ice-covered area. The
product used is the NSIDC 0051 product based on Nimbus-
7 Scanning Multi-channel Microwave Radiometer (SMMR)
and Defense Meteorological Satellite Program (DMSP) Spe-
cial Sensor Microwave/Imagers (SSM/I) Special Sensor Mi-
crowave Imager/Sounder (SSMIS) passive microwave data
(Cavalieri et al., 1996). This product is also used to com-
pute radar freeboard volume in Sect. 4.3 and for the LRM
and SARM calibration. The study also requires a sea ice type
product; this information is derived from the NSIDC 0611
sea ice age product (Tschudi et al., 2019) that is aggregated
into two classes (multiyear ice, MYI, and first-year ice, FYI)
according to the oldest age of the ice within the grid cell
(FYTI: ice age between 0 and 1 year; MYTI: ice age of at least
1 year). Data are available as daily and weekly maps, respec-
tively, with a 12.5km grid resolution. The proportion of the
MYT of a given grid cell refers, in this study, to the mean ice
type observed by all the tracks (for each month of each mis-
sion) that pass within a 25 km radius of this grid cell. This
value is computed during the gridding step. The proportion
would consequently be overestimated compared to what can
be estimated with ice-age-tracking algorithms.

SnowModel-LG (Liston et al., 2020a; Stroeve et al., 2020)
is a snow depth product from a snow evolution model forced
by different reanalyses: we use the version forced by ERAS
(Liston et al., 2020b). The dataset is available from 1 Au-
gust 1980 and 30 July 2018 at a 25 km resolution. Although
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the most commonly used product is still the Warren snow
depth climatology (W99) (Warren et al., 1999), it is no longer
consistent for the recent period, and an altimetry-based prod-
uct such as the altimetric snow depth (ASD) climatology
(Garnier et al., 2021) would not be a relevant choice before
the 2010s; we therefore justify the use of SnowModel-LG to
ensure the relevance of the comparisons presented in Sect. 4.

2.3 Validation data

The results obtained in this study are compared with the dif-
ferent independent datasets presented in this section. Com-
parisons are detailed in Sect. 4. Most of the following
datasets are included in the Lindsay and Schweiger (2013)
dataset and are further described in the corresponding pub-
lication Lindsay and Schweiger (2015). Data availability is
summarized in Fig. 1.

2.3.1 Airborne

Operation Ice Bridge (OIB) was a mission led by NASA.
It consisted of airborne measurement campaigns using scan-
ning lidar altimeter and snow radar to measure both snow
depth and ice thickness (Kurtz et al., 2013). The data we use
are from the Unified Sea Ice Thickness Climate Data Record
of Lindsay and Schweiger (2013), Operation Ice Bridge Ver-
sion 2 being processed by Kurtz et al. (2013). These mea-
surements were carried out between 2009 and 2013 during
each early spring or early fall near the coasts of the Canadian
Arctic Archipelago and Alaska.

Airborne electromagnetic induction (AirEM) can measure
total thickness (snow plus sea ice): the methodology is de-
scribed in Haas et al. (2009). AirEM data that are used in this
study are provided by Lindsay and Schweiger (2013) and are
available from 2001 to 2013 for 22 campaigns in the Arctic
Ocean and Fram Strait.

2.3.2 Moorings and submarines

The following data are all measured with upward-looking in-
struments that are installed either on anchored moorings or
on board submarines. These instruments measure the sea ice
draft, i.e., the height of the immersed part, from which the
sea ice thickness can be derived for comparison with altime-
try data.

The Beaufort Gyre Expedition Project (BGEP) is com-
posed of a network of four moorings located in the Beaufort
Sea (Krishfield et al., 2014). The moorings, equipped with
upward-looking sonar (ULS), record drafts every 2s with a
precision evaluated to 0.3 cm. Data are currently available
from August 2003 to September 2018. The data were col-
lected and made available by the BGEP based at the Woods
Hole Oceanographic Institution.

Belter et al. (2020) performed and diffused a daily sea ice
draft dataset based on upward-looking acoustic Doppler cur-
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rent profilers (ADCPs). These data are located in the Laptev
Sea and are available from August 2003 to September 2016.

The Institute of Ocean Sciences (IOS) provides two ULS
draft measurement datasets named IOS-Eastern Beaufort
Sea (IOS-EBS) and I0S-Chukchi Sea (I0OS-CHK) (Melling,
2008). For IOS-EBS, data are available from April 1990 to
September 2003 in a network of nine sites in the Beaufort
Sea. IOS-CHK is composed of data from a single site lo-
cated in the Chukchi Sea between August 2003 and Au-
gust 2005. The sea ice draft product for IOS-EBS comes
from Melling (2008), and for IOS-CHK it comes from Lind-
say and Schweiger (2013). Draft can be measured with a
precision of about 0.05 m for young ice and can be overesti-
mated up to 0.3 m for older and rougher ice.

The Davis Strait sea ice draft (Davis St) product from an-
chored moorings was detailed in Drucker et al. (2003). Data
used in the study come from the Unified Sea Ice Thickness
Climate Data Record (Lindsay and Schweiger, 2013) and are
available from 2005 to 2008.

The Alfred Wegener Institut (AWI) mooring sea ice draft
dataset is composed of 11 moorings in the Greenland Sea
and Fram Strait processed by Witte and Fahrbach (2005).
The data span the period from 1991 to 2002, and the draft is
recorded with a S min frequency with an accuracy of £0.2 m.

The last sea ice draft dataset presented in this section is de-
rived from data collected by both U.S. Navy and Royal Navy
submarines in the Arctic Ocean from 1975 to 2005 (National
Snow and Ice Data Center, 2006; Wadhams and Horne, 1980;
Wadhams, 1984; Wensnahan, 2005). It gathers data from 39
cruises. According to Rothrock and Wensnahan (2007), sea
ice drafts are estimated to have an overall bias of 29 cm and
a standard deviation of 25 cm from the actual draft.

2.3.3 Coastal stations

Environment and Climate Change Canada compiled weekly
measurements from 27 monitoring stations along the coasts
of the Canadian Arctic Archipelago in one product named
CanCoast. Measurement methods can vary from one station
to another (boreholes, hot-wire thickness gauges, etc.), but
all the stations provide at least sea ice thickness and snow
depth estimation with an accuracy of less than 1 cm.

2.3.4 Satellite altimetry products

Three satellite altimeter sea ice freeboard products have also
been used for comparisons.

Guerreiro et al. (2017) presents the first Envisat radar free-
board dataset consistent with the CryoSat-2 mission. Radar
freeboards are available as monthly maps from November to
April between 2002 and 2012 between 65°N and 81.5°N.
This dataset will be referred to as Envisat LEGOS-PP be-
cause LRM TFMRASO0 FBr was corrected using the pulse
peakiness (PP) and processed by LEGOS (Laboratory of
Space Geophysical and Oceanographic Studies).

https://doi.org/10.5194/tc-17-3013-2023
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Figure 1. Summary of various available datasets for Envisat and ERS validation. Colors distinguish the different types of data: dark blue
for satellite products, light blue for airborne data, yellow for submarines, orange for anchored moorings, green for buoys and red for direct
measurements. (a) Temporal availability. (b) Spatial availability and extent of mission data gaps. The blue disks represent areas not covered
by altimeters due to their orbit’s inclination (no data above 81.5° N for Envisat, 86° N for ICESat-1 and 88° N for CryoSat-2).

The product generated by the ESA Climate Change Initia-
tive program for sea ice thickness estimation (SI-CCI) (Hen-
dricks et al., 2018) includes the whole Arctic sea-ice-covered
region for all winters (October—April) of the Envisat mission
(2002-2012). It provides monthly grids of sea ice thickness,
radar and ice freeboard combined with the related uncertain-
ties. The corresponding methodology is described in Paul
et al. (2018). In this study, this product will be named En-
visat CCI.

Finally, ICESat-1 was a mission operated by NASA,
launched in 2003 and ceasing operations in 2009. It was
composed of a laser altimeter that allowed retrieval of the
total sea ice freeboard (snow depth plus sea ice freeboard).
The ICESat-1 product provides estimations for 15 periods of
about 30d between February 2002 and November 2008 at
a 25 km grid resolution. The version used is the NASA God-
dard one processed by Zwally et al. (2008) and Yi and Zwally
(2009). The ICESat-1 total sea ice freeboard measurement
accuracy is estimated to be about 0.05 m.

3 Methods
3.1 ERS pulse blurring correction

The values of the onboard tracker heights are Ay, while
ERS-2 flights over sea ice reveal instabilities of several me-
ters that cannot be explained by the sea surface topography.
This phenomenon is better observed by computing the sur-
face height anomaly (h,x) over all types of surfaces. This
height anomaly is calculated according to Eq. (1), where alt
is the altitude of the satellite, range is the onboard tracker
range, epoch is obtained after the waveform retracking us-
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ing TFMRAS0, MSS is the DTU15 mean sea surface (An-
dersen et al., 2016), and geophysical_corrs is the sum of all
the geophysical corrections. Figure 2 shows the TFMRAS50-
retracked height estimation for Envisat and ERS-2 along the
collocated pass 25 for cycles 12 and 80, respectively (be-
ginning of January 2003). Regarding the behavior of Envisat
measurements, ERS-2 height anomalies show instabilities of
about 1 m that make the measurements unusable.

hyk = alt — range — epoch — MSS — geophysical_corrs (1)

The instabilities of the height anomalies (mainly over sea
ice) are known as pulse blurring and are a consequence of
the onboard tracker settings. This phenomenon occurs for
both the ERS-1 and ERS-2 missions. A simplified version
of the ocean-mode tracking system is represented in Pea-
cock (1998, p. 71). The tracking system is composed of three
tracking loops to maintain echoes within the radar acquisition
window: the height-tracking loop (HTL), the slope-tracking
loop (STL) and the automatic gain control (AGC). The role
of the HTL is to maintain the successive waveforms in the
middle of the acquisition window. For this purpose, the track-
ing system is able to estimate the position of the tracker for
each individual echo that comprised the average sequence.
The tracker position is therefore adapted at 1020 Hz with a
low-pass af filter described by Eqs. (2) and (3) according
to the HTL error ¢. T is the interval for the low-pass filter

1
to be updated, T is PRE s for the HTL, and A, is the tracker

height for the nth echo, with n between 0 and 49. In the ocean
mode, the algorithm used to estimate ¢ is a suboptimal maxi-
mum likelihood estimator (SMLE). Nevertheless, the SMLE

The Cryosphere, 17, 3013-3039, 2023
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Figure 2. Profiles of surface height anomaly over sea ice and ocean for pass 25 between 78 and 81° N for Envisat in blue green (cycle 12),
ERS-2 in blue and ERS-2 blurring corrected in orange (cycle 80). The red line represents the limit of the 50 % concentration of sea ice,
as with the limit between the open ocean and an ice-covered area. The dark-blue line shows the location of the pass between Svalbard and
Greenland. (a) The surface height along the latitude and (b) the probability density function of surface height for the three passes with the
associated statistics, the average and the standard deviation (SD). The color legend is identical for both subfigures.

has been developed for Brown-like waveforms that can be
found over the open ocean, but it is not suitable for specular
waveforms found over sea ice.

hy =hp_1 +ac+Thy, )
. . Be
hy=h, 1+ T 3

Both Egs. (2) and (3) can be combined to give Eq. (4),
which shows that the range window correction increases with
a n? factor.

h,,:ho—i—nTho—i—noce—Fg(n—i-l),Bs )

A high ¢ (due to an inappropriate sea ice height error es-
timation algorithm, Roca et al., 2009) coupled with this low-
pass filter could drive the large variation of range windows
inside the same averaging sequence, which will “blur” the fi-
nal averaged waveform echo due “the bad overlay between
the individual echoes” (Peacock and Laxon, 2004). Because
the height error is estimated at the end of each averaging se-
quence, a sudden change in the range window is then pos-
sible, especially since the error estimate is also affected by
the pulse blurring and can explain tracker height oscillations.
The problem mainly comes from the choice of the SMLE
to estimate the HTL error. Indeed, it has been elaborated for
ocean-like waveforms with a long trailing edge, in contrast
to peaky waveforms whose power decreases suddenly after
the maximum power peak.

A methodology was developed by Peacock and Laxon
(2004) to deal with this issue. This method consists in finding
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a relation between the height error parameter ¢ and the dif-
ference between the measured surface (over an area covered
by ice) and the “same area if it was not covered by ice” (Pea-
cock, 1998). We interpreted this as the difference between the
raw surface measurements and the interpolated ocean-level
measurements Ah.

Figure 3 illustrates that our interpretation of the Peacock
(1998) theory (on the right) fits with his results (on the left).
Our results reproduce the linear relation between Al and
¢ found by Peacock (1998) and Peacock and Laxon (2004)

with a slope equal to % when ¢ is negative:

heorr = h—%, e =<0,
{ h, e >0. ©)

hcorr =

This correction is applied and presented in Fig. 2. The cor-
rection of the pulse blurring effectively reduces the instabil-
ities of measurements. The correction is similarly asymmet-
ric, so that the variations toward the positive height anomaly
are more corrected than the others. The corrected surface
height anomaly of ERS-2 now appears more similar to En-
visat in terms of the noise and amplitude of variation. For
this particular pass, the standard deviation has been reduced
by 16 % and gets closer to Envisat’s one. Figure Al shows
more results on the impact of blurring correction on ASA
(all-surface anomaly, e.g., floes and leads) noise reduction
compared to Envisat during a whole cycle (80 for ERS and
12 for Envisat).
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Figure 3. Difference between the raw surface measurements and the interpolated ocean-level measurements as a function of the height error
parameter ¢. Panel (a) is taken from Peacock and Laxon (2004), and panel (b) is a reproduction of cycle 83 of ERS-2. In panel (b), squares
and circles, respectively, are the median and mean of Ah for each value of ¢ (on the x axis).

3.2 Along-track radar freeboard retrievals

This section aims to describe the FBr processing chain. This
procedure is common to all missions to preserve homogene-
ity and continuity.

The FBr is the difference between the sea ice surface
height measured over floes and the sea surface height mea-
sured over leads. The use of satellite altimetry for these es-
timates was introduced by Laxon (1994) and Laxon et al.
(2003). Sea ice freeboard (FBi) can be derived from FBr af-
ter a correction of the lower wave propagation speed into the
snow layer (Kwok, 2014). In this study, we focus on the radar
freeboard (without the speed propagation correction) to avoid
the introduction of errors related to snow depth estimation.

It is therefore necessary to discriminate leads and sea ice
floes. This essential step is based on the peakiness of the
radar waveform that quantifies the specularity of the surface
(Laxon et al., 2003; Peacock and Laxon, 2004). We use the
definition of Guerreiro et al. (2017) (Eq. 6). Pulse peakiness
thresholds can depend on the radar altimeter. To ensure the
continuity between Envisat and ERS-2, these thresholds have
been adapted to keep the same lead—floe proportion during
their common flight period; see Table A1l.

max(WF)

PP —— ——
Nbwr, .
} :iz(\))"Fbms WF,

(6)

Ranges are estimated using the TFMRASO0 retracker for all
surfaces and all missions mentioned here to maintain inter-
mission continuity. Height anomaly measurements are then
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expressed relative to the DTU15 mean sea surface (Ander-
sen et al., 2016) and corrected for the common geophysi-
cal corrections (oceanic, polar, solid earth and load tides as
well as tropospheric and ionospheric corrections) according
to Eq. (1). The tide model used is the FES14 from Carrere
et al. (2015). The ERS-2 pulse blurring correction (detailed
in Sect. 3.1) must be applied at this stage of the freeboard
computation.

Surface height anomaly is then split into two variables us-
ing the pulse peakiness classification explained above, the
ice-level anomaly (ILA) over floes and the sea-level anomaly
(SLA) over leads. ILA and SLA outliers are removed by
filtering data that are outside the interval: a rolling mean
#£3 rolling standard deviations with a 60km large sliding
window. After filtering, ILA and SLA are smoothed using
a rolling mean at 12.5km, and then SLA and ILA are lin-
early interpolated (including below floes for SLA and above
leads for ILA) and are again smoothed using a rolling mean
at 12.5km. No limit of distance is used to discard the radar
freeboard, but the interpolation, smoothing and filtering are
not done between values separated by land. Indeed, the pro-
cessing is done within ocean segments separated by land in
order to isolate statistics between segments.

In this study, we will only use the FBr measurements that
are made over floes: indeed, the LRM data correction, ex-
plained in Sect. 3.4, is based on floe characteristics.
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3.3 Data gridding

We performed the LRM FBr correction using monthly maps
in EASE2 (Brodzik et al., 2012) with a 12.5km resolution.
The FBr gridding is done by averaging the values within
a 25 km radius from each pixel weighted by the inverse of
the uncertainty; for other variables, weighting is not applied.
Only sea ice concentrations above 50 % are considered. To
limit the outliers of LRM FBr at the sea ice—ocean boundary,
data with ice concentrations lower than 85 % are removed
when the waveforms have a leading-edge width (LEW) of
higher than 2.5 gates.

3.4 Correction of LRM radar freeboards against
SARM freeboards using neural networks

The radar freeboard maps obtained from the process pre-
sented in Sect. 3.2 for Envisat and CryoSat-2 are shown in
Fig. 4.

Important differences between Envisat and CryoSat-2 can
be noticed in terms of both patterns and mean values. Nega-
tive radar freeboards are mainly due to the retracker choice.
Indeed, TFMRASO is used to retrack heights on both leads
and floes; this introduces a bias in the height over leads. The
TFMRA threshold to retrack heights over leads should be
closer to 80 %, and the use of a 50 % threshold corresponds
to the position of the retrack point for ocean surfaces, not
specular ones (Poisson et al., 2018). The surface over leads
is measured higher than it is and even higher than the surface
over floes. The SLA bias (over leads) is evaluated as con-
stant for the SARM altimeter in the study of Laforge et al.
(2020); this conclusion is also relevant for LRM altimeters
as waveforms over leads are peaky and similar from one lead
to another. This positive constant bias over leads results in a
negative bias in the radar freeboard. To avoid this bias, the re-
tracker threshold could be adapted for leads or the SLA could
be corrected on the CryoSat-2 one. Nevertheless, a thresh-
old of 50 % ensures the stability of the range (Poisson et al.,
2018, Fig. 9), in contrast to higher thresholds (80 %-95 %)
that could lead to up to 47 cm random error in the SLA. A
TFMRA at 50 % for both leads and floes is preferred in this
study as a constant bias is easier to correct than an undeter-
mined random error. Nevertheless, beyond this bias, a lack of
representative sea ice patterns can be observed. For instance,
thick ice regions do not appear for the Envisat mission (see
Fig. 4). This phenomenon also appears in the ERS-2 FBr
since it is also in LRM with the TFMRASO retracker. This
inconsistency comes from the LRM itself (plus the retracker
choice), which has a larger footprint than the resulting one
in SARM. The larger footprint leads to a large impact of the
surface roughness on the reflected echo. It is therefore im-
possible to distinguish between the contributions of heights
and roughness without a physical model of the effect of sea
ice roughness on the reflected echo.
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Paul et al. (2018) and Guerreiro et al. (2017) showed that
there is a significant correlation between the patterns of the
parameters characterizing the surface roughness and the dif-
ferences between the FBr of CS-2 and Envisat. These ob-
servations led to the development of correction methods of
Envisat relative to CS-2, taking advantage of the mission-
overlap period. In the same way, we propose correcting ERS-
2 against Envisat and, once corrected, using the common
flight period between Envisat and ERS-2.

So far, several empirical methods of Envisat freeboard
correction using CryoSat-2 have been developed (Guerreiro
et al., 2017; Paul et al., 2018; Tilling et al., 2019). In Guer-
reiro et al. (2017), the correction consists in finding a link be-
tween Envisat and CS-2 freeboard differences and the PP of
Envisat’s waveforms. The correction proposed by Paul et al.
(2018) adapts the TFMRA threshold of Envisat waveform
retracking according to the LEW of the waveforms and the
surface backscatter. Tilling et al. (2019) suggested correct-
ing the Envisat sea ice thickness (SIT) by utilizing the dis-
tance between leads and floes. All the methods are based
on the comparison of monthly gridded data. The first two
studies share the common approach of trying to correct the
Envisat FBr using the surface roughness (characterized by
one or more parameters as proxies). They both propose a
third-degree polynomial function to link Envisat and CS-2
FBr differences to surface properties. Paul et al. (2018) were
the first to propose using two distinct parameters that char-
acterize two roughness scales to correct LRM measurements
that can impact the waveform shape differently. Our method
follows the same approach (pulse peakiness, leading-edge
slope) with other additional parameters that define the sea
ice state, such as ice concentration, ice type or season. The
leading-edge slope refers to the leading-edge height divided
by the LEW computed between 30 % and 70 % of the maxi-
mum power of the first waveform peak. The LRM-correction
model procedure is based on a neural network in order to
manage strong nonlinearities. The procedure is illustrated in
Fig. 5.

For each mission to be corrected, the NN is trained on
the common flight period between the mission considered
a reference and the one to be corrected. It takes as inputs
monthly grids of the following parameters: LRM FBr (to be
corrected), pulse peakiness, leading-edge slope, ice concen-
tration, M YT proportion, the period and, as a target, the refer-
ence FBr (SARM FBr or LRM-corrected FBr). Note that the
period of the year is taken to capture the seasonal variabil-
ity better, as snow on sea ice and sea ice physical properties
change along the seasons. Inputs and targets are standardized
before the training step.

The neural network used is a multilayer perceptron (MLP).
LRM FBr correction was performed with scikit-learn (Pe-
dregosa et al., 2011). The MLP is composed of four hidden
layers, each composed of 100 neurons. The choice of hyper-
parameters (number of neurons, the learning rate, the reg-
ularization term, the batch size, activation functions, solver
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Figure 4. Pan-Arctic radar freeboard maps for January 2012 for (a) Envisat uncorrected and (b) CryoSat-2.
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Figure 5. Diagram illustrating the principle of freeboard correction by a neural network with the two main steps: in panel (a), the neural
network training phase, and in panel (b), the prediction (correction) phase. 2 corresponds to the inputs and I" to the output of the neural
network. FB: radar freeboard; Conc: sea ice concentration; LES: leading-edge slope; PP: pulse peakiness, fyryr: MYI proportion.

for the weight optimization) was made using a grid search
method. The evaluation criterion, called the score, is chosen
as the determination coefficient. Models are trained on 90 %
of the dataset and tested on the remaining 10 %, the split-
ting being random. During the tuning step, models are cross-
validated, which means that they are each trained five times
with the same combination of hyperparameters but without
the same training or test dataset. The five scores are then an-
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alyzed to determine the best combination. Cross-validation
gives a better idea of the model performance as the depen-
dence on the training dataset is limited. The activation func-
tion for the hidden-layer neurons is a sigmoid related by pos-
sible negative radar freeboard values and the optimizer Adam
(Kingma and Ba, 2014). Moreover, in order to avoid overfit-
ting, an early stopping criterion is used to stop the model
training as soon as the score is not improved during 10 con-
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Table 1. Summary of the “range” error for various missions gov-
erned by the speckle noise (Wingham et al., 2006).

Mission (RA mode) o) (m)
Cryosat-2 (SAR) 0.10*
Cryosat-2 (SARIn) 0.14*
Cryosat-2 (LRM) 0.07*
Envisat 0.068
ERS-2 0.096

* Wingham et al. (2006).

secutive iterations, with a defined tolerance (the validation
fraction is set to 10 % for the early stopping).

Finally, once the hyperparameter combination is set (see
Table A3 for the hyperparameter selection), the MLP is
trained on the whole dataset to provide the correction func-
tion. The trained model is then applied to the LRM monthly
grids to obtain a monthly LRM-corrected radar freeboard.

3.5 Radar freeboard uncertainty quantification

This section aims to estimate the uncertainties for Envisat
and ERS-2 FBr estimations. The uncertainty budget is split
into two steps corresponding to the two main parts of the
freeboard processing chain. The first step covers the along-
track processing up to the gridding, which is common to all
missions, and the second step concerns the correction of the
LRM freeboard, which consists in predicting the corrected
FBr with the neural network (NN FBr).

The uncertainty budget methodology concerning the first
part is taken from Landy et al. (2020) and Ricker et al.
(2014). We assume that for this step there are three sources
of uncertainty. Two of them are random uncertainties: the
speckle noise, largely discussed in Wingham et al. (2006),
and the accuracy of the SLA measurement. The last one is
linked to both retracker choices, surface roughness and snow
radar signal penetration (Ricker et al., 2014).

According to Wingham et al. (2006), the speckle noise
generates an “error” (o71) from 7 to 14 cm (depending on the
acquisition mode) in the range measurement for the CryoSat-
2 altimeter. Estimations of the speckle noise error in the
range for other missions can be relied on for the individ-
ual echo number used to compute the averaged waveforms
(for LRM sensors). Indeed, the speckle noise generates an
error in the range as a function of /n, where n is the ratio
between the number of individual pulses used for each aver-
aging sequence for CS-2 and for the mission for which we
want to estimate the error (Calafat et al., 2017) (see Table A2
for LRM RA characteristics). All final o;; values are sum-
marized in Table 1. Note that Wingham et al. (2006) use the
terminology ““error”, but this refers to uncertainty.

SLA uncertainty (ospa) estimation is taken from Ricker
et al. (2014). The uncertainty in the SLA is estimated as the
standard deviation of the SLA within a sliding window of
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25 km if there are some leads within this window. If not, the
SLA uncertainty is taken as the difference between the inter-
polated and smoothed SLAs and the mean SLA computed as
the mean of raw SLA measurements at leads within a seg-
ment of the ocean (if the pass is over land, statistics are made
segment of ocean by segment of ocean). Finally, we consider
that ogr.o and oj are not correlated and can be combined
to give the random part of radar freeboard uncertainties (or)
following Eq. (7).

2 2 2
OR = 0§LA T 071 (7)

The radar freeboard (including uncertainties) gridding
methodology is taken from Ricker et al. (2014, Sect. 2.4) in
order to take into account the random uncertainties in the
radar freeboard gridding process.

In Landy et al. (2020), the FBr systematic uncertainty bud-
get is decomposed into two parts: on the one hand, the un-
certainties due to the penetration of the signal in the snow
(depending on its salinity or whether it is composed of meta-
morphic snow according to the type of ice) and, on the other
hand, the surface roughness. We assume, as in Ricker et al.
(2014), that the comparison of the freeboard from different
retrackers does not enable us to separate the contribution of
the roughness from the signal partial penetration. We there-
fore consider both sources to be one mixed contribution, es-
timated as about 20 % and 30 %, respectively, of the sea ice
thickness for FYI and MYT (Landy et al., 2020). The system-
atic uncertainties can be underestimated, as the penetration
of the radar waves in the snow uncertainty may be poorly
handled. Note that this systematic uncertainty budget only
concerns the CS-2 mission, which is afterward propagated to
Envisat and ERS-2. Indeed, other missions will be corrected
based on CS-2 estimates.

Therefore, we combined random and systematic uncer-
tainties with a quadratic sum to get the total radar freeboard
uncertainty in a grid and for the related radar freeboard esti-
mation. The uncertainty of the other inputs (LES, PP, sea ice
concentration, MY proportion) is considered to be, for each
grid cell, 2 times the standard deviation of the measurements
used to calculate the average value (grid cell value) divided
by the number of tracks passing through the corresponding
grid cell.

As explained in Sect. 3.4, the LRM radar freeboard correc-
tion is predicted by a neural network. The uncertainty prop-
agation through the neural network is not straightforward,
since the inputs and outputs of the model are not linked by a
mathematical relation. We have chosen to estimate the propa-
gation of uncertainties through a Monte Carlo approach. This
method allows us to propagate uncertainties through non-
analytically represented systems. Nevertheless, the Monte
Carlo method requires a representation of the distribution of
the input and target parameters. As discussed above, there is
no thorough knowledge of the distribution of the input data
for the NN. The method consists in training a number M of
NNs with noisy inputs. The noise has been added to all inputs
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Figure 6. Summary diagram of the uncertainty budget during the along-track, gridding and training correction steps. Panel (a) corresponds
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(for each grid cell and each month) according to a Gaussian
distribution centered on the estimated value and the corre-
sponding uncertainty as the standard deviation. Training and
predictions are done for all the noisy input and output, and
then the distribution of M x N radar freeboard predictions
(from the M noisy NN models applied to N noisy inputs) is
analyzed for each grid cell and each month. The whole un-
certainty budget process is summarized in Fig. 6.
Unfortunately, we have not been able to identify known
distributions such as normal, log-normal or gamma for pre-
dicted FBr distributions. However, we can still derive various
statistics, such as the quantiles at 2.5 % and 97.5 %, which
represent 95 % of the values or the standard deviation to de-
scribe the FBr distribution for each pixel of all monthly grids.

4 Results

This section first presents the correction performance when
applied to Envisat with respect to CS-2 and thereafter to
ERS-2 with respect to Envisat. After this we present the En-
visat and ERS-2 freeboard comparisons against independent
validation datasets.

4.1 Correction performances

The LRM correction methodology is presented in Sect. 3.4.
It was successively applied to Envisat (Env) with respect to
CS-2 and then to ERS-2 with respect to Envisat NN FBr.
Figure 7 compares Envisat NN FBr and CS-2 FBr during De-
cember 2010 and April 2011. Figure 8 presents the same fea-
ture for Envisat and ERS-2 NN FBr during December 2002
and April 2003.

As can be noticed on these maps, Envisat correction allows
recovery of typical patterns of the Arctic sea ice with thick
ice near the coasts of the Canadian Arctic Archipelago and
Greenland and thinner ice in the eastern part of the basin.

Nevertheless, compared to CS-2, the radar freeboard of
thick ice is slightly underestimated and thin ice is slightly
overestimated. However, the mean difference between the
two products is close to zero (1 or 2 mm) for both months.
We also note that the correction results in an asymmetric dis-
tribution with a tendency toward a log-normal distribution at
the basin scale, whereas the CS-2 distribution for the same
mask is centered and appears Gaussian-like.

Radar freeboards of ERS-2 and Envisat (see Fig. 8) are
even more similar. Again, the bias is negligible, and the stan-
dard deviation (SD) of their difference is 2 to 3 times lower
than for Env and CS-2 with a SD of 0.03 and 0.05 m.

The better performance of the ERS-2 correction can be
explained because ERS-2 and Envisat carried similar LRM
altimeters, and they flew on the same orbit with a 28 min de-
lay between the two missions that allowed them to observe
nearly the same surface. On the other hand, CryoSat-2 op-
erates in SARM and flies on a quasi-polar orbit with cycles
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and subcycles very different from Envisat ones. These com-
parisons show that the neural network correction gives satis-
fying results, at least during the common flight periods. The
correction function is then applied to the 10 years of the En-
visat mission and the 8 years of the ERS-2 mission.

Tables A4 and A5, respectively, represent statistics for the
Envisat—CryoSat-2 and ERS-2-Envisat radar freeboards for
each month of the mission-overlap periods. For both correc-
tions, the averaged radar freeboards are close. The highest
mean difference reaches 7 mm in February 2011 for Envisat,
i.e., 9.5 % of the mean Envisat NN FBr. Concerning ERS-2,
the mean difference between ERS-2 and the Envisat NN FBr
does not exceed 3 mm, or 3.3 % of the ERS-2 mean NN FBr.
Concerning all the overlap periods, the mean FBr difference
is 3mm for Env and CS-2, 4.1 % of the Envisat mean NN
FBr, and —2 mm for the ERS-2 and Env one, about 2.2 % of
the ERS-2 mean NN FBr.

In both Figs. 7 and 8, the uncertainties presented for En-
visat and ERS-2 are in fact 2 times the standard deviation
of the respective NN FBr distributions as output of Monte
Carlo simulations for each pixel grid. Detailed statistics for
uncertainties are also provided in Tables A4 and AS.

The median uncertainty in the radar freeboard for the pe-
riod 2010-2012 is 6.3 m for Envisat and 2 cm for CS-2. Re-
gardless of the month, the mean and median uncertainties
of Envisat are always larger than those of CS-2. Concern-
ing the period 2002-2003, the median uncertainty is 8 cm for
the ERS-2 radar freeboard and 7.3 cm for Envisat. Similarly,
statistics on uncertainties are globally higher for ERS-2 esti-
mates (see Tables A4 and A5 for detailed statistics).

4.2 Validation

In this section, Envisat and ERS-2 NN FBr are evaluated
against a large set of independent data. These data are pre-
sented in Sect. 2.3 and include in situ, airborne and space-
based measurements providing sea ice freeboard, draft or
thickness. Data have been converted to sea ice thickness to
make it comparable, except for the SI-CCI and LEGOS-PP
Envisat products, which also provide FBr. The conversions
are based on the hydrostatic balance assumption of sea ice
covered by snow in seawater that is described in Eq. (8).

Pw
Pw — Pi

Ps
Pw — Pi

SIT = -FB; + “hs ®)

The snow depth (k) is taken from the dataset itself if given
(e.g., OIB and CanCoast) with a constant snow density ps =
300kg m—3. Otherwise, the SnowModel-LG and ERAS5 ver-
sion is used for the snow load. The water density values
used are py, = 1024kgm ™3, ,oiFYI =917kgm~ and ,oiMYI =
882kgm™> (Alexandrov et al., 2010). The sea ice density
depends on the MYT proportion within the grid cell, such as
described by Eq. 9).

pi = (1= fayDol + fuyioMY! )
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Figure 7. Comparison of Envisat NN FBr against CryoSat-2 FBr for December 2010 in the upper half and April 2011 in the lower half.
Maps (a) and (g) refer to Envisat with the corresponding CryoSat-2 radar freeboards (b) and (h). Maps below panels (d), (e), (j) and (k) are
the related uncertainties. The right column presents freeboard difference maps (Env — CS-2) (c, i). Panels (f) and (I) show the distribution of
Envisat FBr in red, CryoSat-2 FBr in blue and AFBr in grey. Histograms only include common data between Envisat and CryoSat-2, and
data north or 81.5 ° N are excluded. u refers to the mean difference and SD to the standard deviation of the difference.

For Ku-band measurements, the speed reduction in the
wave in the snow layer is taken into account to obtain the
ice freeboard FB; = FB; + hS(CC—S — 1) (Mallett et al., 2020),
with ¢ the speed of light in a vacuum and ¢ the speed of
light in the snow estimated as ¢s = ¢(1 +0.00051 ps) 13 and
determined by Ulaby et al. (1986).

The different datasets are then gridded into monthly
EASE2 grids of a 12.5km resolution so as to facilitate the

https://doi.org/10.5194/tc-17-3013-2023

comparison to Envisat and ERS-2 monthly grids. Concerning
mooring or coastal measurement stations, data are averaged
to get one value per month.

4.2.1 Envisat

Although numerous datasets are available during the Envisat
flight period, the spatiotemporal coverage of the Arctic basin
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Figure 8. Same as Fig. 7 but for ERS-2 and Envisat during December 2002 and April 2003. Histograms only include data for the coinciding
region between ERS-2 and Envisat. u refers to the mean difference and SD to the standard deviation of the difference.

remains very patchy. The following comparisons are pre-
sented with several types of sensors to reinforce the relevance
of the validation. The consistency and discrepancies are dis-
cussed in the following.

Figure 9 gathers comparisons between Envisat and differ-
ent datasets coming from airborne ones, spaceborne ones,
submarines, drifting buoys and fixed coastal stations, and
Fig. 10 presents comparisons with fixed moorings.

Comparisons presented in Fig. 9 provide satisfying statis-
tics, with correlation values between 0.41 (CanCoast) and

The Cryosphere, 17, 3013-3039, 2023

0.71 (Envisat SI-CCI). Correlation between Envisat and OIB
is in good agreement with Kurtz et al. (2014), who showed
that the autocorrelation of OIB varies from 0.46 to 0.60. Nev-
ertheless, AirEM data are poorly correlated with Envisat,
and statistics reveal a high bias and root mean square error
(RMSE) (up to 1 m). Disregarding CanCoast and spaceborne
estimations, comparisons reveal a negative bias with Envisat
from —3.9 to —2.9 cm, which could suggest an underestima-
tion of Envisat sea ice thickness. The relevant statistics with
CanCoast, with a bias of 8.9 cm and a RMSE of 6.4 cm, sug-
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Figure 9. Comparative scatterplots between Envisat NN sea ice thickness or radar freeboard estimations and other datasets. The x axis
indicates the sea ice thickness from the (a) OIB total ice freeboard, (b) AirEM snow plus ice thickness, (¢) CanCoast ice thickness, (d) UK
and US submarine draft and (e) ICESat-1 total freeboard. Panel (f) compares our Envisat radar freeboard with the SI-CCI Envisat solution
and panel (e) with the Envisat PP solution from Guerreiro et al. (2017). Color bars represent the normalized density. log; was applied before
the normalization for panels (e) and (f) due to the large number of data. N is the number of the couple of values that are compared, “Med”
refers to the median, SD refers to the standard deviation, RMSE refers to the root mean square error, and r refers to the correlation coefficient.

gest that this underestimation could be attributed not only to sensitive to the algorithm used (Kwok and Haas, 2015; Kwok
Envisat, but maybe also to snow depth or other parameters. etal., 2017).

However, bias remains within the estimated range of uncer- The comparison with ICESat-1 data reveals a strong dis-
tainty. The bias between OIB and Envisat estimation could persion with a low bias of 20cm and a correlation of 0.50.
also be attributed to the OIB snow depth whose estimation is The Envisat radar freeboard product established in the frame-
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Figure 10. Comparative scatterplots between Envisat NN sea ice thickness estimations and anchored mooring datasets. Each dot corresponds
to a monthly averaged value. The x axis indicates the sea ice thickness from (a) BGEP, (b) BGEP vs. Envisat CCI, (¢) Davis Strait, (d) IOS
CHK and EBS and (e) Transdrift Laptev Sea ice draft. The color bar shows the MY proportion. N is the number of the couple of values that
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the correlation coefficient.

work of the CCI and the version presented in this study are
coherent, with a bias close to zero, a standard deviation from
the difference of 5.2 cm and a fairly high correlation of 0.71.
The Envisat CCI and Envisat NN datasets are consistent with
a low mean bias, whereas the Envisat PP radar freeboard
from Guerreiro et al. (2017) presents a thinner mean FBr than
Envisat NN estimations.

The Envisat NN solution is also compared to several moor-
ing (BGEP, 10S, Davis Strait and Transdrift Laptev Sea)
datasets (Fig. 10). The four campaigns yield fairly high cor-
relations, with Envisat NN estimates greater than or equal to
0.62 and reasonable standard deviations of 50-60 cm down
to 32 cm for the Laptev Sea estimates from Transdrift. While
Envisat has a low negative bias of —9.2 cm with respect to
BGEP, other campaign biases are largely negative, with val-
ues from —53 to —76 cm.

Figure 10b also provides a comparison between the En-
visat SI-CCI version and BGEP, similarly to Fig. 10a. With
respect to BGEP estimations, the statistics are slightly bet-
ter for the product presented in this study than for SI-CClIs.

The Cryosphere, 17, 3013-3039, 2023

Nevertheless, the two products seem to be relatively consis-
tent with each other.

4.2.2 ERS-2

The ERS-2 freeboards are also compared with measure-
ments from AirEM, US and UK submarines, and CanCoast
in Fig. 11.

The results of ERS-2 validation are close to those of En-
visat. Figure 11 shows similarly strong discrepancies with
AirEM but even better results for CanCoast and submarine
comparison in terms of correlations (0.60 and 0.74, respec-
tively, instead of 0.41 and 0.55 for Envisat), and standard
deviations of the differences are equivalent to those found
for Envisat (62 and 57 cm compared to 63 and 53 cm). The
comparisons between Envisat and the mooring illustrated in
Fig. 12 are also relevant, with correlations of 0.67 and 0.66.
Similarly to Envisat, comparisons with ULS data reveal non-
negligible negative biases. As a comparison, the bias be-
tween CryoSat-2 and OIB between 2010 and 2019 is about
16 cm, and the RMSE is about 77 cm. Concerning CS-2—
BGEP comparisons, the bias is 21 cm with the same overesti-
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mation of FYT thickness for CS-2, and with Transdrift Laptev
Sea comparisons this shows a negative bias of —38 cm.
Although draft measurements by moorings are among the
most accurate measurements (they measure 90 % of the total
thickness), they will tend to overestimate the true thickness
when the ice bottom surface is rough, which is inherent to
the method. Indeed, the chaotic aspect of the lower surface
of sea ice can impact the ULS-returned echoes. This strong
deformation concerns mainly the thick and rough ice, which
can explain the tendency of ULS measurements to overes-
timate thick ice relative to Envisat and ERS-2. Eventually,
the methods used for the above comparisons can be ques-
tioned insofar as monthly averages are compared with punc-
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tual measurements (spatially and temporally), which may in-
deed induce biases (e.g., OIB, AirEM). Conversions from
radar freeboard to sea ice thickness can also be suspected in
bias comparisons, as this depends on the snow depth product.
SnowModel-LG has been chosen because it is the only con-
tinuous dataset of the Arctic basin-scale product that covers
more than the 27 years required in this study.

4.3 Radar freeboard volume time series from 1995 to
2021

The time series represented in Fig. 13 is derived from
monthly maps processed as developed in Sect. 3 and vali-
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dated in Sect. 4.2. Nevertheless, even after the gridding pro-
cess, missing values can occur, especially where track den-
sity becomes low (e.g., close to the ice—ocean boundary).
To ensure comparable volumes from one month to another,
missing data have been replaced by interpolated values from
the Gauss—Seidel relaxation method implemented in pangeo-
Pyinterp (https://github.com/CNES/pangeo-pyinterp, last ac-
cess: 15 January 2022), a Python library developed by CNES
(the French National Space Agency). It is important to note
that the volumes presented in Fig. 13 only consider values up
to 81.5°N (ERS-2 and Envisat orbit limitation).

The monthly radar freeboard volume has been finally es-
timated with Eq. (10) by summing radar freeboard volumes
within the P cells, with Sj the grid cell area (12 5002 m?) and
FB;i and SIC; the individual radar freeboard and sea ice con-
centrations from NSIDC (introduced in Sect. 2.2) for each
grid cell. We have decided not to convert estimations to sea
ice volume to limit bias coming from snow depth estimates.

The evolution of the snow load is not taken into account in
Fig. 13, which means that the evolution of the volume is not
fully represented, in the same way as if the total volume were
derived with a snow depth climatology. Indeed, a decrease
in FBr volume may merely indicate that the snow depth is
greater and the ice thickness unchanged.

S; - FBy; - SIG; (10)

P
Vegr =

i=1

Three trend lines fitted on winter mean volumes are repre-
sented in Fig. 13: one is computed considering Envisat and
CS-2 estimates only (dashed line), a second one from all mis-
sion estimations (solid line) and a third one with a FBr cli-
matology from 1995 to 2021 (dashed—dot line). Trends are
performed using the Theil-Sen estimator (Theil, 1950; Sen,
1968) and SciPy (Virtanen et al., 2020), providing uncer-
tainties in the regression given with a 95 % confidence in-
terval along with a statistical significance Mann—Kendall test
(Mann, 1945; Kendall, 1990). All the trends are decreasing:
—4.574+8.73,—9.11+5.16 and —1.80 & 0.42km> yr—!, re-
spectively. The negative trend is strengthened with the in-
tegration of ERS-2 estimates and becomes statistically sig-
nificant. The uncertainties from regression remain high but
are induced by the large interannual variability. The trend
in mean winter FBr volume obtained from a FBr clima-
tology between 1995 and 2021 is lower but more reliable,
suggesting that FBr variation over the last 30 years domi-
nates FBr volume variations, in contrast to sea ice concen-
tration. In comparison, the Ob River mean discharge is about
400km?> yr~! if the radar freeboard volume is roughly con-
verted to total volume with a factor of 10, and the Arctic sea
ice decline rate (up to 81.5° N) is about one-quarter of the Ob
River mean annual discharge.
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5 Conclusions

This study presents a methodology to recover the radar free-
board by first correcting ERS-2 heights from the pulse blur-
ring effect and then adjusting radar freeboards over the En-
visat and CryoSat-2 missions. The pulse blurring effect cor-
rection is based on the Peacock (1998) and Peacock and
Laxon (2004) approaches. The adjustment function devel-
oped in this study relies on a multilayer perceptron, which
is trained during the common flight period between ERS-2
and Envisat missions using the Envisat radar freeboard as a
reference. To ensure consistency along the three altimeters,
the Envisat radar freeboard has been preliminarily corrected
against CryoSat-2 using the same neural network. The choice
of a fixed-threshold retracker (TFMRA) to process the wave-
forms was motivated by continuity purposes, as it can be
used for all radar altimetry missions. The methodology to
estimate ERS-2 and Envisat radar freeboards is based on the
CryoSat-2 TFRMASO0 radar freeboard, which is assumed to
be the reference in this study. This hypothesis can be bal-
anced regarding the progress in physical retrackers. The final
NN FBr does not conventionally result from a difference in
two retracked heights but corresponds to a TFMRAS0 SAR-
like radar freeboard corrected by a neural network.

The uncertainty estimation is initially tackled, referring to
the previous studies of Ricker et al. (2014) and Landy et al.
(2020). These uncertainties are then propagated through the
neural network thanks to a Monte Carlo approach. Uncer-
tainties in LRM-calibrated radar freeboards range from a few
millimeters up to about 15 cm depending on the ice type and
the density of the along-track measurements in the grid cell.
One of the limitations of the uncertainty budget is the poten-
tial underestimation of the impact of radar penetration within
the snow layer, which could lead to an underestimation of the
radar freeboard uncertainty.

Envisat-corrected radar freeboards show good consistency
with CryoSat-2 estimation, with a mean bias of 3 mm for
both common winters and a SD of 9.8 cm. The Envisat radar
freeboard was then compared to a large sample of validation
data: 9 of the 10 datasets give consistent results, especially
the strong correlation with the mooring (0.63 to 0.94) and
CanCoast stations. Apart from CanCoast, these results are
nearly systematically negatively biased, suggesting an under-
estimation of the radar freeboard. A part of the latter bias is
probably due to the draft measurement’s method, suggested
by the increase in the bias depending on the thickness of the
ice. In any case, these biases remain within the range of esti-
mated uncertainties. The result is also consistent with the so-
lution proposed by SI-CCI. Even if the main purpose of this
study is to extend the radar freeboard time series to ERS-2,
it is nevertheless fundamental to ensure the reliability of En-
visat as a reference.

The ERS-2-corrected radar freeboard is close to Envisat-
corrected ones, with a correlation of 0.88, a bias of 2 mm and
a standard deviation of 3.8 cm for the difference. Compar-
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Figure 13. Time series representing radar freeboard volume up to 81.5° N for each winter month for ERS-2 in dark blue, Envisat in teal
and CS-2 in dark red. Blue triangles are winter mean radar freeboard volumes. Red lines are linear regressions of winter mean volumes
from 2002/2003 for the dashed line and 1995/1996 for the solid line, and estimated trends are —4.57 £8.73 and —9.11 & 5.16km3 yrfl,
respectively. Green triangles represent winter mean radar freeboard volumes computed with a climatology of radar freeboards between 1995
and 2021, dashed—dot green line is the regression for FBr volume with FBr climatology, and the estimated trend is —1.80 +0.42 km3yr—1.
*(1—=p) <05, (1= p)>0.99 and *** (1 — p) > 0.999999 are the probability values of the Mann—Kendall test.

isons with the few sets of in situ data reveal the same positive
bias with CanCoast as for Envisat and high negative biases
for submerged draft measurements. Except for AirEM, the
comparisons provide consistent correlation values between
0.55 and 0.74. Indeed, these statistics are those expected
for comparisons between measurements from different tech-
nologies (airborne lasers, ULS moorings, etc.), recording dif-
ferent physical quantities (draft, radar freeboard) with differ-
ent spatial and temporal availabilities (point, monthly aver-
ages). Unless the comparison methodology is reconsidered,
it seems difficult to obtain better correlations.

This work finally allows reconstruction of 27 years of Arc-
tic radar freeboards up to 81.5° N and suggests a decline in
the sea ice radar freeboard volume of 9.11 £5.16km> yr—!
(about 1 order of magnitude more for the total volume). This
decline is significantly greater than considering only the En-
visat and CryoSat-2 period. Radar freeboard variations have
a predominant influence on volume variations but also on the
trend, in contrast to sea ice concentration, which seems to
have a moderate impact. In the near future, the methodology
will be extended to the ERS-1 mission and for austral sea ice
to recover 30 years of sea ice volume variation for both hemi-
spheres. These extended data will also be freely available
to the community at large. This radar freeboard time series
product based on CryoSat-2 estimations intends to provide a
record of monthly sea ice changes over the last 3 decades and
for climate studies.
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Appendix A: Additional technical content and statistics
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Figure Al. Comparison of the standard deviation of ASA between Envisat (cycle 12) and ERS (cycle 80) before (a) and after blurring
correction (b) within each grid cell of a 12.5 km resolution grid. The median of the standard deviation difference for panel (a) is 7.5, and for
panel (b) it is 0.80 cm.

Table A1. Pulse peakiness thresholds for lead and floe classification.

Mission (RA mode) PP lead PP floe
threshold  threshold

CryoSat-2 (SAR) 0.3* 0.1*
Envisat (LRM) 0.3* 0.1*
ERS-2 (LRM) 0.2839 0.1328

* Guerreiro et al. (2017).

Table A2. Radar altimeter characteristics with “Number of echoes” the approximate number of individual echoes that have been summed up
to deliver the 20 Hz or 18 Hz waveforms. o1, is the estimated error in the range from speckle noise.

Mission (RA mode) PRF Data Number of oy
frequency echoes
CryoSat-2 (LRM) 1.97kHz 20Hz 94 7cm*
Envisat (LRM) 1.80kHz 18 Hz 100  6.8cm
ERS-2 (LRM) 1.02kHz 20Hz 50 9.6cm

* Wingham et al. (2006).
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Table A3. Neural-network-selected hyperparameters; other values were set by default in the MLP regression function from scikit-learn
(Pedregosa et al., 2011).
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Figure A2. An outline of the link established by the NN between some of the inputs (standardized LES, PP, sea ice concentration and
TFMRAS50 FBr) and Envisat NN FBr. WPU means the waveform power unit for Envisat correction.
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Figure A3. An outline of the link established by the NN between some of the inputs (standardized LES, PP, sea ice concentration and
TFMRASO0 FBr) and ERS-2 NN FBr. WPU means the waveform power unit for ERS-2 correction.

Table A4. Monthly statistics (average and standard deviation) on the radar freeboard for each winter month from the overlap period be-
tween Envisat and CryoSat-2 and averaged for both winters (2010-2012). SD corresponds to the standard deviation, and “unc” stands for
uncertainty.

Month FBr mean (m) ‘ FBr median (m) ‘ FBr SD (m) ‘ Correlation ‘ FBr unc mean (m) ‘ FBr unc median (m)
Env.  CS2 | Env.  CS2 | Env  CS2 | Env/CS2 | Env CS2 | Env Cs2
g Nov 0.050 0.052 | 0.036 0.037 | 0.050 0.096 0.521 0.125 0.025 0.057 0.017
Q  Dec 0.052 0.057 | 0.041 0.048 | 0.050 0.102 0.447 0.101 0.025 0.051 0.016
g Jan 0.065 0.068 | 0.059 0.063 | 0.047 0.100 0.451 0.127 0.027 0.057 0.019
< Feb 0.084 0.091 | 0.073 0.079 | 0.062 0.121 0.522 0.150 0.031 0.068 0.022
% Mar 0.098 0.103 | 0.086 0.089 | 0.076 0.129 0.581 0.160 0.074 0.033 0.024
§ Apr 0.112 0.116 | 0.096 0.097 | 0.088 0.135 0.643 0.158 0.035 0.080 0.025
a Oct 0.043 0.043 | 0.036 0.033 | 0.042 0.115 0.365 0.185 0.028 0.069 0.019
8 Nov 0.045 0.048 | 0.038 0.036 | 0.040 0.096 0.400 0.142 0.024 0.057 0.018
g Dec 0.051 0.052 | 0.042 0.044 | 0.054 0.111 0.510 0.114 0.025 0.050 0.017
< Jan 0.066 0.067 | 0.061 0.058 | 0.068 0.114 0.592 0.156 0.028 0.054 0.019
f’é Feb 0.080 0.081 | 0.071  0.071 0.076  0.125 0.596 0.155 0.030 0.068 0.021
§ Mar 0.091 0.087 | 0.077 0.073 | 0.090 0.135 0.657 0.160 0.031 0.071 0.021
2010-2012 0.074 0.077 | 0.063  0.062 | 0.071 0.120 0.583 0.144 0.029 0.063 0.020
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Table AS. Statistics (average and standard deviation) on the radar freeboard for each winter month from the overlap period between ERS-2
and Envisat and averaged for the whole winter (2002—-2003). SD corresponds to the standard deviation, and “unc” stands for uncertainty.

Month FBr mean (m) ‘ FBr median (m) ‘ FBr SD (m) ‘ Correlation ‘ FBr unc mean (m) ‘ FBr unc median (m)
ERS-2  Env | ERS-2  Env | ERS-2  Env | ERS-2Env | ERS-2  Env | ERS-2 Env
5 Oct 0.061 0.058 | 0.049 0.043 0.044  0.048 0.881 0.176 0.152 0.087 0.066
S Nov 0.074 0.073 | 0.048 0.044 | 0.064 0.070 0.937 0.145 0.134 0.075 0.062
g Dec 0.076  0.074 | 0.050 0.048 | 0.067 0.074 0.900 0.146 0.115 0.075 0.064
K Jan 0.083 0.082 | 0.065  0.065 0.056  0.068 0.862 0.164 0.148 0.078 0.071
& Feb 0.095 0.093 | 0.075 0.074 | 0.068 0.074 0.895 0.172 0.156 0.082 0.076
~§ Mar 0.105 0.103 | 0.085 0.084 | 0.074 0.092 0.834 0.167 0.168 0.087 0.081
Apr 0.112  0.112 | 0.094  0.096 | 0.076  0.088 0.845 0.168 0.157 0.093 0.087
2002-2003  0.090 0.088 | 0.073  0.071 0.068  0.079 0.876 0.164 0.148 0.082 0.073

Table A6. Statistics of the sea ice thickness difference between Envisat and each validation dataset.

Campaign Bias Median Standard deviation RMSE  Correlation
(m) (m) (m) (m)
@ Envisat CCI —0.007 —0.007 0.052  0.053 0.712
P Envisat PP 0.035 0.030 0.082  0.089 0.553
ICESat-1 -0.197 —-0.116 0.906  0.928 0.497
» OIB —0.352 —0.249 1.018 1.077 0.332
Q AIrEM —0.288 —0.517 0.991 1.032 0.047
j CanCoast 0.089 —0.001 0.632  0.637 0.406
f UK and US submarines —0.391 —0.280 0.532  0.659 0.548
.2  BGEP —-0.092 —-0.051 0.481 0.486 0.621
(%“3 Davis Strait —-0.760 —0.896 0.616  0.945 0.679
IOS Chukchi and Beaufort seas  —0.670  —0.525 0.587 0.877 0.825
Transdrift Laptev Sea —-0.526 —0.531 0.323 0.605 0.937
Table A7. Statistics of the sea ice thickness difference between ERS-2 and each validation dataset.
Campaign Bias Median Standard deviation RMSE  Correlation
(m) (m) (m) (m)

% AirEM 0.816 0.869 0.846 1.175 0.260

£ UK and US submarines —0.217 —0.163 0.567 0.607 0.740

';“j CanCoast 0.096 0.047 0.616 0.623 0.602

g 10S Beaufort Sea —-0.782  —0.583 0.781 1.103 0.677

'é AWI moorings —0.662 —0.735 0.499  0.807 0.662

%]
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Appendix B: List of abbreviations

Abbreviations Description

ASA All-surface anomaly

AGC Automatic gain control

ASD Altimetric snow depth

CHK Chukchi

CS-2 CryoSat-2

EBS Eastern Beaufort Sea

Env Envisat

ERS European Remote-Sensing Satellite
FB Sea ice freeboard

FBr Radar freeboard

FBt Total freeboard

FYI First-year ice

HTL Height-tracking loop

ILA Ice-level anomaly

LRM Low-resolution mode

MSS Mean sea surface

MYI Multiyear ice

MLP Multilayer perceptron

NN Neural network

PRF Pulse-repetition frequency
RA Radar altimeter

RMSE Root mean squared error
SAR Synthetic aperture radar
SARM Synthetic aperture radar mode
SARin Synthetic aperture radar interferometric
SD Standard deviation

SIT Sea ice thickness

SLA Sea-level anomaly

STL Slope-tracking loop

TFMRA Threshold first-maximum retracker algorithm
ULS Upward-looking sonar

Data availability. The CryoSat-2, Envisat and ERS-2 radar
freeboard datasets produced in this study (Bocquet and Fleury,
2023) are available at https://doi.org/10.5281/zenodo.8063431.
The ERS-2 RA GDR L1b product from the ESA Reaper project
(Brockley et al., 2017) is available at https://doi.org/10.57780/ers-
07698ce (European Space Agency, 2014). Envisat RA-2 L1b
v3 from the ESA is available at https://doi.org/10.5270/EN1-
ajb696a (European Space Agency, 2018). The CryoSat-2
baseline-D L1b product is available at https://doi.org/10.5270/CR2-
2cnblvi (European Space Agency, 2019a) for SARM and at
https://doi.org/10.5270/CR2-u3805kw (European Space Agency,
2019b) for SARin mode. Sea ice concentration from NSIDC
0051 is available at https://doi.org/10.5067/8GQSLZQVLOVL
(Cavalieri et al., 1996), and sea ice age from NSIDC 0611 is
available at https://doi.org/10.5067/UTAV7490FEPB (Tschudi
et al., 2019). SnowModel-LG snow depth and snow density are
available from https://nsidc.org/data/nsidc-0051/versions/2 (Liston
et al.,, 2020a). Data taken from the Unified Sea Ice Thickness
Climate Data Record (OIB, AirEM, Davis Strait sea ice draft,
IOS-CHK) are available at https://doi.org/10.7265/N5D50JXV
(Lindsay and Schweiger, 2013). The BGEP dataset is avail-
able at http://www.whoi.edu/beaufortgyre (Krishfield et al.,
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2014). The Transdrift Laptev Sea dataset is available at
https://doi.org/10.1594/PANGAEA.912927 (Belter et al., 2020).
IOS-EBS is available at https://doi.org/10.7265/N58913S
(Melling, 2008). AWI mooring drafts are available at
https://doi.org/10.7265/N5G15XSR (Witte and Fahrbach, 2005).
Submarine upward-looking sonar ice draft profile data and
statistics are available at https://doi.org/10.7265/N54Q7RWK
(National Snow and Ice Data Center, 2006). The Can-
Coast dataset is available on the Environment and Climate
Change Canada website at https://open.canada.ca/data/en/
dataset/054cb024-e0bc-43ae-90c7-d9e23517ab8e (Envi-
ronment Canada, 2021a) and https://open.canada.ca/data/
en/dataset/8b624b7b-2e8f-436b-b9bd-f31c2e6613cf (Envi-
ronment Canada, 2021b). The Envisat product from LE-
GOS presented in Guerreiro et al. (2017) is available
at https://doi.org/10.6096/CTOH_SIT_NH_ENV_2017_01
(Guerreiro and Fleury, 2022). The Envisat radar freeboard
produced in the framework of the CCI is available at
https://doi.org/10.5285/f4c34f4f0f1d4d0da06d771f6972f180

(Hendricks et al., 2018). The ICESat-1 NASA Goddard dataset
is available at https://doi.org/10.5067/SXIJVI3A2XIZT (Yi and
Zwally, 2009). All the datasets were last visited in December 2021.
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