Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1165-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1165-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities
Deniz Tobias Gök
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Dirk Scherler
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Institute of Geological Sciences, Freie Universität Berlin, 12249
Berlin, Germany
Leif Stefan Anderson
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, United States
Related authors
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
The Cryosphere, 18, 5259–5276, https://doi.org/10.5194/tc-18-5259-2024, https://doi.org/10.5194/tc-18-5259-2024, 2024
Short summary
Short summary
We derived Landsat Collection 2 land surface temperature (LST) trends in the Swiss Alps using a harmonic model with a linear trend. Validation with LST data from 119 high-altitude weather stations yielded robust results, but Landsat LST trends are biased due to unstable acquisition times. The bias varies with topographic slope and aspect. We discuss its origin and propose a simple correction method in relation to modeled changes in shortwave radiation.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
The Cryosphere, 18, 5259–5276, https://doi.org/10.5194/tc-18-5259-2024, https://doi.org/10.5194/tc-18-5259-2024, 2024
Short summary
Short summary
We derived Landsat Collection 2 land surface temperature (LST) trends in the Swiss Alps using a harmonic model with a linear trend. Validation with LST data from 119 high-altitude weather stations yielded robust results, but Landsat LST trends are biased due to unstable acquisition times. The bias varies with topographic slope and aspect. We discuss its origin and propose a simple correction method in relation to modeled changes in shortwave radiation.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Katharina Wetterauer and Dirk Scherler
Earth Surf. Dynam., 11, 1013–1033, https://doi.org/10.5194/esurf-11-1013-2023, https://doi.org/10.5194/esurf-11-1013-2023, 2023
Short summary
Short summary
In glacial landscapes, debris supply rates vary spatially and temporally. Rockwall erosion rates derived from cosmogenic 10Be concentrations in medial moraine debris at five Swiss glaciers around Pigne d'Arolla indicate an increase in erosion from the end of the Little Ice Age towards deglaciation but temporally more stable rates over the last ∼100 years. Rockwall erosion rates are higher where rockwalls are steep and north-facing, suggesting a potential slope and temperature control.
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023, https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
Short summary
This paper presents a two-dimensional subglacial sediment transport model that evolves a sediment layer in response to subglacial sediment transport conditions. The model captures sediment transport in supply- and transport-limited regimes across a glacier's bed and considers both the creation and transport of sediment. Model outputs show how the spatial distribution of sediment and water below a glacier can impact the glacier's discharge of sediment and erosion of bedrock.
Emma Lodes, Dirk Scherler, Renee van Dongen, and Hella Wittmann
Earth Surf. Dynam., 11, 305–324, https://doi.org/10.5194/esurf-11-305-2023, https://doi.org/10.5194/esurf-11-305-2023, 2023
Short summary
Short summary
We explored the ways that boulders and bedrock affect the shapes of hills and valleys by testing how quickly they erode compared to soil. We found that bedrock and boulders mostly erode more slowly than soil and predict that fracture patterns affect where they exist. We also found that streams generally follow fault orientations. Together, our data imply that fractures influence landscapes by weakening bedrock, causing it to erode faster and to eventually form a valley where a stream may flow.
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023, https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
Short summary
Surface melt is a major factor driving glacier movement. Using satellite images, we have tracked the movements of 38 glaciers in the Pamirs over 7 years, capturing their responses to rapid meteorological changes with unprecedented resolution. We show that in spring, glacier accelerations propagate upglacier, while in autumn, they propagate downglacier – all resulting from changes in meltwater input. This provides critical insights into the interplay between surface melt and glacier movement.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Cited articles
Anderson, L. S. and Anderson, R. S.: Debris thickness patterns on
debris-covered glaciers, Geomorphology, 311, 1–12,
https://doi.org/10.1016/j.geomorph.2018.03.014, 2018.
Anderson, L. S., Armstrong, W. H., Anderson, R. S., Scherler, D., and
Petersen, E.: The Causes of Debris-Covered Glacier Thinning: Evidence for
the Importance of Ice Dynamics From Kennicott Glacier, Alaska, Front. Earth
Sci., 9, 680995, https://doi.org/10.3389/feart.2021.680995, 2021.
Aragon, B., Johansen, K., Parkes, S., Malbeteau, Y., Al-mashharawi, S.,
Al-amoudi, T., Andrade, C. F., Turner, D., Lucieer, A., and McCabe, M. F.: A
calibration procedure for field and uav-based uncooled thermal infrared
instruments, Sensors (Switzerland), 20, 3316, https://doi.org/10.3390/s20113316,
2020.
Aubry-Wake, C., Baraer, M., McKenzie, J. M., Mark, B. G., Wigmore, O.,
Hellström, R., Lautz, L., and Somers, L.: Measuring glacier surface
temperatures with ground-based thermal infrared imaging, Geophys. Res.
Lett., 42, 8489–8497, https://doi.org/10.1002/2015GL065321, 2015.
Aubry-Wake, C., Zéphir, D., Baraer, M., McKenzie, J. M., and Mark, B.
G.: Importance of longwave emissions from adjacent terrain on patterns of
tropical glacier melt and recession, J. Glaciol., 64, 49–60,
https://doi.org/10.1017/jog.2017.85, 2018.
Barry, R., Chorley, R., Barry, R. G., and Oke, T. R.: Boundary
layer climates, in: Atmosphere, Weather and Climate, Routledge,
https://doi.org/10.4324/9780203428238-12, 2022.
Benn, D. and Evans, D. J. A.: Glaciers and Glaciation, 2nd edition, Routledge,
https://doi.org/10.4324/9780203785010, 2014.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.
I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of
debris-covered glaciers in the Mount Everest region to recent warming, and
implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174,
https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier
changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote
sensing, J. Glaciol., 57, 543–556, https://doi.org/10.3189/002214311796905604, 2011.
Bird, R. E. and Hulstrom, R. L.: A Simplified Clear Sky Model for Direct and
Diffuse Insolation on Horizontal Surfaces, No. SERI/TR-642-761, Solar Energy Research Inst., Golden, CO (USA), 1981.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The state and fate of himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.
G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya,
Boxall, K., Willis, I., Giese, A., and Liu, Q.: Quantifying Patterns of
Supraglacial Debris Thickness and Their Glaciological Controls in High
Mountain Asia, Front. Earth Sci., 9, 657440,
https://doi.org/10.3389/feart.2021.657440, 2021.
Boxall, K., Willis, I., Giese, A., and Liu, Q.: Quantifying Patterns of Supraglacial Debris Thickness and Their Glaciological Controls in High Mountain Asia, Front. Earth Sci., 9, 657440, https://doi.org/10.3389/feart.2021.657440, 2021.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and
parameterization of albedo variations at haut glacier d'arolla, Switzerland,
J. Glaciol., 46, 675–688, https://doi.org/10.3189/172756500781832675, 2000.
Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E.
J., and Smiraglia, C.: Meteorology and surface energy fluxes in the
2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc
Massif, Italian Alps, J. Geophys. Res.-Atmos., 115, 115.D9,
https://doi.org/10.1029/2009JD013224, 2010.
Budzier, H. and Gerlach, G.: Calibration of uncooled thermal infrared
cameras, J. Sensors Sens. Syst., 4, 187–197, https://doi.org/10.5194/jsss-4-187-2015,
2015.
Byerlay, R. A. E., Coates, C., Aliabadi, A. A., and Kevan, P. G.: In situ
calibration of an uncooled thermal camera for the accurate quantification of
flower and stem surface temperatures, Thermochim. Acta, 693, 178779,
https://doi.org/10.1016/j.tca.2020.178779, 2020.
Conway, H. and Rasmussen, L. A.: Summer temperature profiles within
supraglacial debris on Khumbu Glacier, Nepal, in: IAHS-AISH Publication, 89–98,
2000.
Cook, K. L.: An evaluation of the effectiveness of low-cost UAVs and
structure from motion for geomorphic change detection, Geomorphology, 278, 195–208,
https://doi.org/10.1016/j.geomorph.2016.11.009, 2017.
Corripio, J. G.: Vectorial algebra algorithms for calculating terrain
parameters from dems and solar radiation modelling in mountainous terrain,
Int. J. Geogr. Inf. Sci., 17, 1–23, https://doi.org/10.1080/713811744, 2003.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Dugdale, S. J., Kelleher, C. A., Malcolm, I. A., Caldwell, S., and Hannah,
D. M.: Assessing the potential of drone-based thermal infrared imagery for
quantifying river temperature heterogeneity, Hydrol. Process., 33, 1152–1163,
https://doi.org/10.1002/hyp.13395, 2019.
FLIR – UAS Radiometric Temperature Measurements:
https://www.flir.com/discover/suas/uas-radiometric-temperature-measurements/
(last access: 26 April 2022), 2020
Foster, L. A., Brock, B. W., Cutler, M. E. J., and Diotri, F.: A physically
based method for estimating supraglacial debris thickness from thermal band
remote-sensing data, J. Glaciol., 58, 677–691, https://doi.org/10.3189/2012JoG11J194,
2012.
Gardelle, J., Berthier, E., and Arnaud, Y.: Slight mass gain of Karakoram
glaciers in the early twenty-first century, Nat. Geosci., 5, 322–325,
https://doi.org/10.1038/ngeo1450, 2012.
Gibson, M. J., Glasser, N. F., Quincey, D. J., Mayer, C., Rowan, A. V., and
Irvine-Fynn, T. D. L.: Temporal variations in supraglacial debris
distribution on Baltoro Glacier, Karakoram between 2001 and 2012,
Geomorphology, 295, 572–585, https://doi.org/10.1016/j.geomorph.2017.08.012, 2017.
Glasser, N. F., Holt, T. O., Evans, Z. D., Davies, B. J., Pelto, M., and
Harrison, S.: Recent spatial and temporal variations in debris cover on
Patagonian glaciers, Geomorphology, 273, 202–216,
https://doi.org/10.1016/j.geomorph.2016.07.036, 2016.
Gök, D. T., Scherler, D., and Anderson, L. S.: High-resolution debris
cover mapping using UAV-derived thermal imagery, GFZ Data Serv. [data/code],
https://doi.org/10.5880/GFZ.3.3.2022.003, 2022.
Hartmeyer, I., Delleske, R., Keuschnig, M., Krautblatter, M., Lang, A., Schrott, L., and Otto, J.-C.: Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls, Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, 2020a.
Hartmeyer, I., Keuschnig, M., Delleske, R., Krautblatter, M., Lang, A., Schrott, L., Prasicek, G., and Otto, J.-C.: A 6-year lidar survey reveals enhanced rockwall retreat and modified rockfall magnitudes/frequencies in deglaciating cirques, Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, 2020b.
Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna,
A., Kraska, T., Muller, O., Schultz, J., Udelhoven, T., Wilke, N., and
Rascher, U.: Land surface temperature retrieval for agricultural areas using
a novel UAV platform equipped with a thermal infrared and multispectral
sensor, Remote Sens., 12, 1075, https://doi.org/10.3390/rs12071075, 2020.
Herreid, S.: What Can Thermal Imagery Tell Us About Glacier Melt Below Rock
Debris?, Front. Earth Sci., 9, 681059, https://doi.org/10.3389/feart.2021.681059,
2021.
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth’s glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0, 2020.
Hill-Butler, C.: Thermal infrared remote sensing: sensors, methods,
applications, Int. J. Remote Sens., 35, 359–360,
https://doi.org/10.1080/01431161.2014.928448, 2014.
Hock, R. and Huss, M.: Chapter 9 – Glaciers and climate change, in: Climate
Change (Third Edition), edited by: Letcher, T. M., Elsevier, 157–176,
https://doi.org/10.1016/B978-0-12-821575-3.00009-8, 2021.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau,
U., Morin, S., Orlove, B., and Steltzer, H. I.: Chapter 2: High Mountain
Areas, IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, in: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, 131–202, 2019.
Hopkinson, C., Barlow, J., Demuth, M., and Pomeroy, J.: Mapping changing
temperature patterns over a glacial moraine using oblique thermal imagery
and lidar, Can. J. Remote Sens., 36, S257–S265, https://doi.org/10.5589/m10-053, 2010.
Huang, L., Li, Z., Tian, B. S., Han, H. D., Liu, Y. Q., Zhou, J. M., and
Chen, Q.: Estimation of supraglacial debris thickness using a novel target
decomposition on L-band polarimetric SAR images in the Tianshan Mountains,
J. Geophys. Res.-Earth Surf., 122, 925–940, https://doi.org/10.1002/2016JF004102,
2017.
Iqbal, M.: An Introduction to Solar Radiation, Elsevier,
https://doi.org/10.1016/b978-0-12-373750-2.x5001-0, 1983.
Irvine-Fynn, T. D. L., Porter, P. R., Rowan, A. V., Quincey, D. J., Gibson,
M. J., Bridge, J. W., Watson, C. S., Hubbard, A., and Glasser, N. F.:
Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers,
Geophys. Res. Lett., 44, 11-894, https://doi.org/10.1002/2017GL075398, 2017.
Kaushik, S., Singh, T., Bhardwaj, A., Joshi, P. K., and Dietz, A. J.:
Automated Delineation of Supraglacial Debris Cover Using Deep Learning and
Multisource Remote Sensing Data, Remote Sens., 14, 1352,
https://doi.org/10.3390/rs14061352, 2022.
Kirkbride, M. P.: The temporal significance of transitions from melting to
calving termini at glaciers in the central Southern Alps of New Zealand, The
Holocene, 3, 232–240, https://doi.org/10.1177/095968369300300305, 1993.
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers
by primary dispersal from transverse englacial debris bands, Earth Surf.
Process. Landforms, 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W.
W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's
glaciers, Nature, 549, 257–260, https://doi.org/10.1038/nature23878, 2017.
Kraaijenbrink, P. D. A., Shea, J. M., Litt, M., Steiner, J. F., Treichler,
D., Koch, I., and Immerzeel, W. W.: Mapping surface temperatures on a
debris-covered glacier with an unmanned aerial vehicle, Front. Earth Sci.,
6, 64, https://doi.org/10.3389/feart.2018.00064, 2018.
Malbéteau, Y., Parkes, S., Aragon, B., Rosas, J., and McCabe, M. F.:
Capturing the diurnal cycle of land surface temperature using an unmanned
aerial vehicle, Remote Sens., 10, 1407, https://doi.org/10.3390/rs10091407, 2018.
McCarthy, M., Pritchard, H., Willis, I., and King, E.: Ground-penetrating
radar measurements of debris thickness on Lirung Glacier, Nepal, J.
Glaciol., 63, 543–555, https://doi.org/10.1017/jog.2017.18, 2017.
McCarthy, M. J.: Quantifying supraglacial debris thickness at local to
regional scales, University of Cambridge, Cambridge, https://doi.org/10.17863/CAM.41172, 2019.
Mesas-Carrascosa, F. J., Pérez-Porras, F., de Larriva, J. E. M., Frau,
C. M., Agüera-Vega, F., Carvajal-Ramírez, F.,
Martínez-Carricondo, P., and García-Ferrer, A.: Drift correction
of lightweight microbolometer thermal sensors on-board unmanned aerial
vehicles, Remote Sens., 10, 615, https://doi.org/10.3390/rs10040615, 2018.
Mihalcea, C., Brock, B. W., Diolaiuti, G., D'Agata, C., Citterio, M.,
Kirkbride, M. P., Cutler, M. E. J., and Smiraglia, C.: Using ASTER satellite
and ground-based surface temperature measurements to derive supraglacial
debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif,
Italy), Cold Reg. Sci. Technol., 52, 341–354,
https://doi.org/10.1016/j.coldregions.2007.03.004, 2008.
Miles, E. S., Steiner, J. F., and Brun, F.: Highly variable aerodynamic
roughness length (z0) for a hummocky debris-covered glacier, J. Geophys.
Res.-Atmos., 122, 8447–8466, https://doi.org/10.1002/2017JD026510, 2017.
Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., and
Pellicciotti, F.: Surface Pond Energy Absorption Across Four Himalayan
Glaciers Accounts for 1/8 of Total Catchment Ice Loss, Geophys. Res. Lett.,
45, 10–464, https://doi.org/10.1029/2018GL079678, 2018.
Muñoz-Sabater, J.: ERA5-Land hourly data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019.
Nakawo, M. and Young, G. J.: Field Experiments to Determine the Effect of a
Debris Layer on Ablation of Glacier Ice, Ann. Glaciol., 2, 85–91,
https://doi.org/10.3189/172756481794352432, 1981.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Nicholson, L. and Mertes, J.: Thickness estimation of supraglacial debris
above ice cliff exposures using a high-resolution digital surface model
derived from terrestrial photography, J. Glaciol., 63, 989–998,
https://doi.org/10.1017/jog.2017.68, 2017.
Norman, J. M. and Becker, F.: Terminology in thermal infrared remote sensing
of natural surfaces, Agric. For. Meteorol., 77, 159–173,
https://doi.org/10.1016/0168-1923(95)02259-Z, 1995.
Oerlemans, J. and Greuell, W.: Sensitivity studies with a mass balance model
including temperature profile calculations inside the glacier, Zeitschrift für Gletscherkunde und Glazialgeologie, 22.2, 101–124, 1986.
Østrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence
of Ice Cores in Moraine Ridges, Geogr. Ann., 41, 228–230,
https://doi.org/10.1080/20014422.1959.11907953, 1959.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Pellicciotti, F., Stephan, C., Miles, E., Herreid, S., Immerzeel, W. W., and
Bolch, T.: Mass-balance changes of the debris-covered glaciers in the
Langtang Himal, Nepal, from 1974 to 1999, J. Glaciol., 61, 373–386,
https://doi.org/10.3189/2015JoG13J237, 2015.
Price, J. C.: On the analysis of thermal infrared imagery: The limited
utility of apparent thermal inertia, Remote Sens. Environ., 18, 59–73,
https://doi.org/10.1016/0034-4257(85)90038-0, 1985.
Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered
glaciers including heat conduction through the debris layer, J. Glaciol.,
56, 903–916, https://doi.org/10.3189/002214310794457218, 2010.
Ribeiro-Gomes, K., Hernández-López, D., Ortega, J. F., Ballesteros,
R., Poblete, T., and Moreno, M. A.: Uncooled thermal camera calibration and
optimization of the photogrammetry process for UAV applications in
agriculture, Sensors (Switzerland), 17, 2173, https://doi.org/10.3390/s17102173,
2017.
Rounce, D. R. and McKinney, D. C.: Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model, The Cryosphere, 8, 1317–1329, https://doi.org/10.5194/tc-8-1317-2014, 2014.
Rounce, D. R., King, O., McCarthy, M., Shean, D. E., and Salerno, F.:
Quantifying Debris Thickness of Debris-Covered Glaciers in the Everest
Region of Nepal Through Inversion of a Subdebris Melt Model, J. Geophys.
Res. Earth Surf., 123, 1094–1115, https://doi.org/10.1029/2017JF004395, 2018.
Rounce, D. R., Hock, R., McNabb, R. W., Millan, R., Sommer, C., Braun, M.
H., Malz, P., Maussion, F., Mouginot, J., Seehaus, T. C., and Shean, D. E.:
Distributed Global Debris Thickness Estimates Reveal Debris Significantly
Impacts Glacier Mass Balance, Geophys. Res. Lett., 48, e2020GL091311,
https://doi.org/10.1029/2020GL091311, 2021.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.: ORB: An efficient
alternative to SIFT or SURF, in: Proceedings of the IEEE International
Conference on Computer Vision, 6–13 November 2011, Barcelona, Spain, https://doi.org/10.1109/ICCV.2011.6126544,
2011.
Rusinkiewicz, S. and Levoy, M.: Efficient variants of the ICP algorithm,
Proc. Int. Conf. 3-D Digit. Imaging Model. 3DIM, 28 May 2001–1 June 2001, Quebec City, QC, Canada,
https://doi.org/10.1109/IM.2001.924423, 2001.
Schauwecker, S., Rohrer, M., Huggel, C., Kulkarni, A., Ramanathan, A. L.,
Salzmann, N., Stoffel, M., and Brock, B.: Remotely sensed debris thickness
mapping of Bara Shigri Glacier, Indian Himalaya, J. Glaciol., 61, 675–688,
https://doi.org/10.3189/2015JoG14J102, 2015.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Hillslope-glacier
coupling: The interplay of topography and glacial dynamics in High Asia, J.
Geophys. Res.-Earth Surf., 116, 116.F2, https://doi.org/10.1029/2010JF001751, 2011a.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable
response of Himalayan glaciers to climate change affected by debris cover,
Nat. Geosci., 4, 156–159, https://doi.org/10.1038/ngeo1068, 2011b.
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial Debris-Cover Extents, Geophys. Res. Lett., 45, 11–798, https://doi.org/10.1029/2018GL080158, 2018.
Shaw, T. E., Brock, B. W., Fyffe, C. L., Pellicciotti, F., Rutter, N., and
Diotri, F.: Air temperature distribution and energy-balance modelling of a
debris-covered glacier, J. Glaciol., 62, 185–198,
https://doi.org/10.1017/jog.2016.31, 2016.
Shukla, A., Gupta, R. P., and Arora, M. K.: Estimation of debris cover and
its temporal variation using optical satellite sensor data: A case study in
Chenab basin, Himalaya, J. Glaciol., 55, 444–452,
https://doi.org/10.3189/002214309788816632, 2009.
Shumway, R. H. and Stoffer, D. S.: Time series analysis and its applications, Vol. 3, New York: Springer, 2000.
Sobrino, J. A. and Cuenca, J.: Angular variation of thermal infrared
emissivity for some natural surfaces from experimental measurements, Appl.
Opt., 38, 3931–3936, https://doi.org/10.1364/ao.38.003931, 1999.
Steiner, J. F., Litt, M., Stigter, E. E., Shea, J., Bierkens, M. F. P., and
Immerzeel, W. W.: The Importance of Turbulent Fluxes in the Surface Energy
Balance of a Debris-Covered Glacier in the Himalayas, Front. Earth Sci., 6, 144,
https://doi.org/10.3389/feart.2018.00144, 2018.
Steiner, J. F., Kraaijenbrink, P. D. A., and Immerzeel, W. W.: Distributed
Melt on a Debris-Covered Glacier: Field Observations and Melt Modeling on
the Lirung Glacier in the Himalaya, Front. Earth Sci., 9, 678375,
https://doi.org/10.3389/feart.2021.678375, 2021.
Stewart, R. L., Westoby, M., Pellicciotti, F., Rowan, A., Swift, D., Brock,
B., and Woodward, J.: Using climate reanalysis data in conjunction with
multi-temporal satellite thermal imagery to derive supraglacial debris
thickness changes from energy-balance modelling, J. Glaciol., 67, 366–384,
https://doi.org/10.1017/jog.2020.111, 2021.
Sullivan, D. G., Fulton, J. P., Shaw, J. N., and Bland, G.: Evaluating the
Sensitivity of an Unmanned Thermal Infrared Aerial System to Detect Water
Stress in a Cotton Canopy, Trans. ASABE, 50, 1963–1969,
https://doi.org/10.13031/2013.24091, 2007.
Swisstopo: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html#download, last access: 7 July 2021.
Tielidze, L. G., Bolch, T., Wheate, R. D., Kutuzov, S. S., Lavrentiev, I. I., and Zemp, M.: Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014, The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, 2020.
Torres-Rua, A.: Vicarious calibration of sUAS microbolometer temperature
imagery for estimation of radiometric land surface temperature, Sensors
(Switzerland), 17, 1499, https://doi.org/10.3390/s17071499, 2017.
Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: Scikit-image: Image processing in python, PeerJ, 2014, e453, https://doi.org/10.7717/peerj.453, 2014.
Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L.,
Stewart, R. L., and Brock, B. W.: Geomorphological evolution of a
debris-covered glacier surface, Earth Surf. Process. Landforms, 45, 3431–3448,
https://doi.org/10.1002/esp.4973, 2020.
Zhang, Y., Fujita, K., Liu, S., Liu, Q., and Nuimura, T.: Distribution of
debris thickness and its effect on ice melt at Hailuogou glacier,
southeastern Tibetan Plateau, using in situ surveys and ASTER imagery, J.
Glaciol., 57, 1147–1157, https://doi.org/10.3189/002214311798843331, 2011.
Short summary
We performed high-resolution debris-thickness mapping using land surface temperature (LST) measured from an unpiloted aerial vehicle (UAV) at various times of the day. LSTs from UAVs require calibration that varies in time. We test two approaches to quantify supraglacial debris cover, and we find that the non-linearity of the relationship between LST and debris thickness increases with LST. Choosing the best model to predict debris thickness depends on the time of the day and the terrain aspect.
We performed high-resolution debris-thickness mapping using land surface temperature (LST)...