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Abstract. Debris-covered glaciers are widespread in high
mountain ranges on earth. However, the dynamic evolution
of debris-covered glacier surfaces is not well understood, in
part due to difficulties in mapping debris-cover thickness in
high spatiotemporal resolution. In this study, we present land
surface temperatures (LSTs) of supraglacial debris cover and
their diurnal variability measured from an unpiloted aerial
vehicle (UAV) at a high (15 cm) spatial resolution. We test
two common approaches to derive debris-thickness maps by
(1) solving a surface energy balance model (SEBM) in con-
junction with meteorological reanalysis data and (2) least
squares regression of a rational curve using debris-thickness
field measurements. In addition, we take advantage of the
measured diurnal temperature cycle and estimate the rate
of change of heat storage within the debris cover. Both
approaches resulted in debris-thickness estimates with an
RMSE of 6 to 8 cm between observed and modeled debris
thicknesses, depending on the time of the day. Although the
rational curve approach requires in situ field measurements,
the approach is less sensitive to uncertainties in LST mea-
surements compared to the SEBM approach. However, the
requirement of debris-thickness measurements can be an in-
hibiting factor that supports the SEB approach. Because LST
varies throughout the day, the success of a rational function
to express the relationship between LST and debris thick-
ness also varies predictably with the time of day. During the
period when the debris cover is warming, LST is heavily in-
fluenced by the aspect of the terrain. As a result, clear-sky
morning flights that do not consider the aspect effects can be
problematic. Our sensitivity analysis of various parameters
in the SEBM highlights the relevance of the effective ther-

mal conductivity when LST is high. The residual and vari-
able bias of UAV-derived LSTs during a flight requires cali-
bration, which we achieve with bare-ice surfaces. The model
performance would benefit from more accurate LST mea-
surements, which are challenging to achieve with uncooled
sensors in high mountain landscapes.

1 Introduction

Debris-covered glaciers are common in many mountain
ranges globally (Herreid and Pellicciotti, 2020; Scherler et
al., 2018). Although debris cover is generally rather thin,
usually less than a meter, it can profoundly influence sur-
face melt rates and thus the mass balance of glaciers (Rounce
et al., 2021). Whereas thin debris cover (<2 cm) acceler-
ates melt rates, due to the lower albedo compared to clean
ice, thick debris cover insulates the ice surface and reduces
melt rates (e.g., Østrem, 1959; Nicholson and Benn, 2006).
Consequently, glaciers with widespread and thick debris
cover can persist longer at lower elevations than debris-free
glaciers (Scherler et al., 2011a). Debris-free glaciers world-
wide respond to climate change by thinning and retreating
(Bolch et al., 2012; Hock et al., 2019; Hock and Huss, 2021).
Debris-covered glaciers in contrast show a broad range of
responses to climate change with some glaciers being sta-
tionary and some retreating (Scherler et al., 2011b; Benn et
al., 2012; Gardelle et al., 2012; Kirkbride and Deline, 2013;
Benn and Evans, 2014). Therefore, regional- to global-scale
predictions of glacier evolution in response to climate change
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need to account for debris cover (Rounce and McKinney,
2014; Pellicciotti et al., 2015).

Complex interactions between the various elements of
debris-covered glaciers, including differential melt, the over-
all down glacier thickening of the debris layer, and the pres-
ence of ice cliffs and surface ponds, remain not well under-
stood (Benn et al., 2012; Anderson et al., 2021; Kirkbride,
1993; Irvine-Fynn et al., 2017; Miles et al., 2018; Ander-
son and Anderson, 2018). Processes responsible for the ex-
tent and thickness of debris cover are the rate of debris sup-
ply from bedrock hillslopes; the rate of ablation, which ex-
poses englacially transported debris; and surface processes,
as well as ice dynamics (Hartmeyer et al., 2020a, b; Kirkbride
and Deline, 2013). As all these processes vary with time,
supraglacial debris cover ought to change in time, too. In-
deed, recent studies document changes in debris-cover thick-
ness in various mountain ranges on earth. Most studies, how-
ever, focus on changes in the extent of debris cover (Shukla et
al., 2009; Bhambri et al., 2011; Glasser et al., 2016; Tielidze
et al., 2020; Kaushik et al., 2022), whereas studies docu-
menting changes in thickness are relatively rare (Stewart et
al., 2021; Gibson et al., 2017). In addition, debris-thickness
observations based on satellite imagery are at best limited
to a relatively coarse spatial resolution of tens of meters. In
particular, the abundance of supraglacial streams, ponds, and
ice cliffs can increase or decrease rapidly across the glacier
surface (Anderson et al., 2021). A better understanding of
transport and the emergence of supraglacial debris over short
timescales requires the development of quantitative models.
Therefore, comprehensive observations of debris-cover ex-
tent and thickness at high resolution are essential for under-
standing the dynamic evolution of debris-covered glacier sur-
faces.

Existing approaches to spatially quantify debris thickness
comprise (1) the extrapolation of point or cross-section field
data (McCarthy et al., 2017; Nicholson and Mertes, 2017),
(2) the exploitation of the relationship between the land sur-
face temperature (LST) and debris thickness (Nakawo and
Young, 1981), (3) the estimation of sub-debris melt by digi-
tal elevation model (DEM) differencing and converting melt
rate to debris thickness based on the Østrem curve (Rounce et
al., 2018), (4) a combination of 2 and 3 (Rounce et al., 2021),
and (5) the use of synthetic aperture radar (Huang et al.,
2017). It has been shown that the LSTs can be related to de-
bris thickness by fitting empirical functions (e.g., linear, ex-
ponential, rational) using ground data (Mihalcea et al., 2008;
McCarthy, 2019; Boxall et al., 2021; Gibson et al., 2017); ex-
ponential scaling, assuming the lowest measured LST corre-
sponds to 1 cm debris thickness (Kraaijenbrink et al., 2017);
or solving a surface energy balance model for debris thick-
ness with meteorological data input from either automated
weather stations or reanalysis data (Zhang et al., 2011; Fos-
ter et al., 2012; Rounce and McKinney, 2014; Schauwecker
et al., 2015; Stewart et al., 2021).

Most LST-based approaches to estimate debris-cover
thickness have focused on satellite imagery, whereas stud-
ies employing near-ground image acquisition in high res-
olution are less frequent. LSTs can be measured in high
resolution using uncooled microbolometers applied either
obliquely from the ground surface (Hopkinson et al., 2010;
Aubry-Wake et al., 2015, 2018) or in nadir mounted to an
unpiloted aerial vehicle (UAV) (Kraaijenbrink et al., 2018).
Debris thickness was recently mapped using oblique LSTs
(Herreid, 2021), but the quantification of debris thickness
from UAV thermal imagery has remained elusive. The possi-
bility to measure the spatiotemporal variability of LSTs from
the ground or from a UAV is a particular advantage, as most
thermal infrared measurements from space do not have a sub-
daily temporal resolution.

Here, we present UAV-derived LSTs and their diurnal vari-
ability to estimate debris thickness, as they vary in space at
various times of the day. To estimate debris thickness, we
solve a surface energy balance model using ERA-5 reanaly-
sis data and the measured LSTs. We take advantage of the di-
urnal measurements and consider the debris’s change in heat
storage as part of the surface energy balance model. We then
compare the results with debris-thickness maps derived from
the empirical relationship of LSTs and in situ-measured de-
bris thicknesses using a rational curve.

2 Study area

The Tsijiore Nouve Glacier (TNG) (Fig. 1) located in south-
west Switzerland (46.01◦ N, 7.46◦ E) is around 5 km long
with an average width of ∼ 300 m. The surface area of the
TNG covers ∼ 2.73 km2. The glacier is characterized by an
ice fall in the central part, separating the debris-covered and
the debris-free part of the surface. The flow direction is north
and shows a strong eastward knickpoint within the ablation
zone. The lateral moraines are very steep and partly vege-
tated. The surface of the TNG hosts steep ice cliffs (Fig. 1b),
supraglacial streams, debris-free bare-ice parts, and partly
continuous as well as partly patchy debris cover of hetero-
genic thicknesses and grain sizes. The glacier is easily ac-
cessible at day and night and therefore well suited for our
study. The study focuses on a nearly continuously debris-
covered portion of the TNG. A relatively small study area of
60 000 m2 allowed for eight UAV flights covering the entire
study area throughout the day.

3 Materials and methods

3.1 Field data

Field data were collected on 30 August 2019 on an area of ap-
proximately 60 000 m2 (Fig. 1a), under blue-sky conditions
(isolated clouds in the late afternoon). Spatially distributed
debris surface temperature was measured between 09:00 and
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Figure 1. Overview of the study area on the Tsijiore Nouve Glacier, Switzerland. (a) Orthomosaic from optical unpiloted aerial vehicle
(UAV) data obtained on 30 August 2019. Yellow triangles indicate locations of debris-thickness measurements, and green squares indicate
ground control points (GCPs). The histogram shows the distribution of the debris thicknesses measured in the field. (b) Slope map obtained
from UAV-derived digital elevation model (15 cm resolution). (c) UAV-derived land surface temperature (LST) at 13:00 (UTC+1). Blue
areas depict LST<0.5 ◦C. The inset scatterplot shows in situ debris-thickness measurements versus LSTs. Black dashed lines in (b) and (c)
indicate profiles shown in (d) (elevation) and (e) (LST).

22:00 local time (UTC+1; hereafter we always refer to local
time in the text) at 2 h intervals to capture the diurnal tem-
perature cycle. Temperature measurements were done using
a radiometric uncooled microbolometer (FLIR Tau 2 long-
wave infrared thermal camera) mounted to a DJI Mavic Pro
UAV. The UAV followed the same pre-defined path for all
eight flights at 80 m elevation above the glacier surface (ter-
rain adjusted). Optical UAV imagery (12 MP) was recorded
simultaneously with the thermal images. The thermal sensor
operates within a temperature range of −40 to 160 ◦C; has
a resolution of 640× 512 pixels, which, given the flight al-
titude, yields a thermal image resolution of approximately
0.17 m× 0.16 m; and measures longwave radiation within a
range of 7.5 to 13.5 µm. Recording of the thermal infrared
images was done in conjunction with the ThermalCapture

2.0 OEM (TeAx Technology GmbH), allowing for the stor-
age of images on an SD card. The recording was done with a
reduced frame rate (default 9 Hz). Each flight took between
12 and 15 min and captured around 600 thermal images. The
setup is suitable for high-mountain UAV applications due to
its very low size and weight. Prior to the UAV flights six
ground control points (GCPs) were distributed across the
area of interest (Fig. 1a). The GCPs were made from alu-
minum foil to be clearly recognizable in the thermal images
due to the very low emissivity.

Debris-thickness measurements were made at 90 locations
within the study area (Fig. 1). Coordinates of measurement
locations were documented using a Garmin handheld GPS
device (horizontal accuracy: ±3.6 m). The debris cover on
the TNG is generally thin: measured thicknesses are below
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30 cm, with a mean of 9 cm, a median of 5 cm, and a standard
deviation of 10 cm. The debris cover close to lateral moraines
consists of very large boulders (>0.5 m) that rendered mea-
surements impractical and thus introduced a bias on the point
measurements. Furthermore, it was not entirely clear where
debris-covered ice transitioned to lateral moraines near the
glacier margin.

3.2 Thermal drift and offset correction

Uncooled microbolometers are sensitive to environmental
temperature fluctuations (Heinemann et al., 2020). Specifi-
cally, the sensor’s detector focal plane array, the sensor hous-
ing, and the lens of uncooled microbolometers are sensi-
tive to temperature changes. Accurate radiometric temper-
ature measurements require a thermal equilibrium between
the sensor’s components and the environment. Unbalanced
thermal conditions (e.g., the sensor cools down after UAV
takeoff, changing wind conditions, or heats up by direct inci-
dent shortwave radiation) introduce a temperature bias. The
thermal adjustment of the sensor can thus lead to changes
in measurements, known as thermal drift: the recorded tem-
perature changes, while the object’s temperature remains the
same (Ribeiro-Gomes et al., 2017; Malbéteau et al., 2018;
Dugdale et al., 2019; Aragon et al., 2020). Furthermore,
the ever-changing micro-meteorological conditions under a
drone prevent the perpetuation of a thermal equilibrium and
hamper accurate radiometric measurements.

The FLIR Tau 2 sensor performs an internal calibration,
the flat field correction (FFC), to correct for non-uniformities
by lens distortions and variations in the thermal pixel-to-
pixel sensitivity. FFC is performed using the shutter at power
up, when the camera changes temperature, and periodically
during operation. The shutter is considered to be a uniform
temperature source for each pixel and is used to update the
offset correction coefficients. This internal calibration leads
to in-flight temperature jumps that are accounted for in a
postprocessing step, called drift compensation. The occur-
rence of the FFC events is used to calculate linearly back-
wards an offset value for each frame (TeAx; Stefan Thamke,
personal communication, 2021). Usually, this is done auto-
matically by the ThermoViewer software, but in our case,
the reduced frame rate resulted in the loss of several frames
containing the FFC occurrence metadata entry: a drawback
of the system one should be aware of. However, we identi-
fied the frames following the internal calibration and imple-
mented the drift compensation ourselves (Fig. 2b). To find
the temperature jumps within the images, we used a thresh-
old of 2 K differences in the mean temperature of the overlap-
ping part in consecutive image pairs. The temperature jumps
are clearly visible in the histogram time series (Fig. 2a), and
we found this threshold to match the temperature jumps best.
The overlap was defined as the bounding box of matching
keypoints detected in successive images using the Oriented
FAST and Rotated BRIEF (ORB) algorithm (Rublee et al.,

2011) implemented in the scikit-image Python library (Van
der Walt et al., 2014).

Despite the successful detection of FFC events and applied
drift compensation during postprocessing of the temperature
data, we still observed bare-ice surfaces with considerable
temperature deviations from 0 ◦C, the expected temperature
for a melting ice surface. Furthermore, the remaining tem-
perature bias appears to be not constant with time (Fig. 2b).
Therefore, we applied a further calibration step that employs
the ice surface as a reference. The air temperature during the
day of measurements was well above 0 ◦C, and the ice sur-
face, where visible, was melting. Therefore we assume the
LST of the ice surface to be at 0 ◦C. The extraction of the
ice surface was done by a color-based segmentation algo-
rithm using k-means clustering (Pedregosa et al., 2011) and
subsequently manually confirmed, similar to the approach of
Aubry-Wake et al. (2015). We then interpolated the ice tem-
peratures using splines and calculated an offset correction for
each frame, in a manner that the LST of the ice will be 0 ◦C
(Fig. 2c). The drift and offset were similar for most flights,
but the evening flights showed less variation in the ice tem-
peratures. However, for large ice temperature variations, the
spline interpolation may not capture the temperature offset as
shown in Fig. 2c (frame ∼ 250). The correction and calibra-
tion procedure was applied for each flight.

3.3 Orthomosaic generation (photogrammetry)

Each flight yielded around 600 thermal infrared frames
(Fig. 2), of which around 400 have been used to generate
orthomosaic maps, and 200 were omitted as they recorded
the takeoff and landing of the UAV. The diurnal variation of
the surface temperature and relatively low contrast of thermal
images led to spatiotemporal variations in the reconstruc-
tion of the 3D point clouds. Instead of additional point cloud
alignment (Rusinkiewicz and Levoy, 2001), we orthorecti-
fied the thermal images using the same digital surface model
(DSM) obtained from simultaneously recorded optical im-
ages. Therefore, we identified and marked all GCPs in both
the optical and thermal images prior to the photogrammetric
processing to improve the image alignment and the calcula-
tion of the camera calibration parameters (Cook, 2017). As
the footprint of the images is relatively large with respect to
our area of interest, the six GCPs were visible in almost all
thermal images. The generated DSM from the optical images
was then used as the basis for the thermal image orthorectifi-
cation. The overlapping parts were reduced by a weighted av-
erage during the orthomosaic generation. Agisoft Metashape
software offers several options on how to handle overlap ar-
eas, and we found the default setting to produce the most
reasonable results.
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Figure 2. Thermal correction and calibration using bare-ice temperatures at 11:00 (UTC+1) on 30 August 2019. The histogram time series in
the figure displays the frequency of measured temperatures in each thermal infrared image, with each vertical stripe representing one image.
(a) Raw at-sensor (brightness) temperature with detected flat field correction events (black triangles). The temperatures of the focal plane
array (FPA) and housing case returned by the sensor are shown in orange and a bold, dashed black line. (b) Drift-compensated temperatures
with ice surface temperatures (red dots) and thermal drift correction offset (dashed line). The black line shows the spline interpolation of the
measured ice surface temperatures with the edges set to a constant value. (c) Offset-corrected temperatures, each frame based on the spline
interpolation that the ice surface temperatures are at 0 ◦C.

3.4 Land surface temperature (LST)

The temperature measured by the sensor, the brightness tem-
perature, is influenced by (1) the upward-directed path ra-
diance, (2) the radiation emitted by the surface towards the
sensor, and (3) the reflected portion of the incoming atmo-
spheric longwave radiation. Due to the low flight elevation
of 80 m aboveground we neglect the path radiance. The re-
flected portion of incoming atmospheric longwave radiation
(3) was taken from the downward thermal flux of ERA5-
Land hourly reanalysis data (Muñoz Sabater, 2019) with re-
spect to the time of flight. The large footprint of the re-
analysis data (0.1◦× 0.1◦) compared to the small test site
(∼ 150 m× 350 m) might introduce additional uncertainties.
However, the influence on the LSTs is small, as the magni-
tude of the reflected radiation is also very small. The retrieval
of the LSTs (2) is then a function of the emissivity of the sur-
face material and the atmospheric transmissivity between the
ground and the sensor. We assume the transmissivity to be
negligible under the meteorological conditions and flight al-
titude (Kraaijenbrink et al., 2018; Malbéteau et al., 2018).
Following Stefan–Boltzmann’s law we calculated the LSTs
using

LST=
4

√
σT 4

rad− (1− ε) ·LW ↓
σε

, (1)

where σ is the Stefan–Boltzmann constant (5.67×
108 W m−2 K−4), ε the emissivity of the surface type (de-
bris= 0.94, rough ice= 0.97) (Rounce and McKinney, 2014;
Aubry-Wake et al., 2015), and LW↓ the incoming longwave
radiation (W m−2). Some authors point out the relevance
of atmospheric transmissivity (Torres-Rua, 2017; Herreid,
2021), while others neglect it due to low UAV flight eleva-
tions above the ground surface (Sullivan et al., 2007; Hill-
Butler, 2014). We think radiation attenuated by water vapor
in the atmosphere between the sensor and ground would be
spatially uniform and thus compensated by our calibration
procedure. To assign emissivity values across the glacier sur-
face, we distinguished between ice and debris using a su-
pervised random forest classification with manually created
training data (Breiman, 2001). By comparison with the opti-
cal imagery and according to the algorithm’s mean prediction
error, we found the best classification results when the tem-
perature differences between ice and debris were the largest,
at 15:00. Data from this flight were used to classify the ther-
mal imagery.

3.5 Surface energy balance model

Thermal energy fluxes at the earth’s surface are described in
the surface energy balance approach used here. For a layer
of supraglacial debris, the rate of change of heat stored in the
debris (1S) must balance all incoming and outgoing energy
fluxes (all fluxes have units of W m−2 and are positive when
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directed towards the debris layer):

1S = SW+LW+LE+H +G, (2)

where SW and LW are the net shortwave and longwave ra-
diation fluxes, H and LE are the sensible and latent heat
fluxes, and G is the conductive heat flux from the debris into
the underlying ice. The parameters used in the surface energy
balance are listed in Table 1.

The net shortwave radiation is a function of the albedo and
the amount of incoming solar radiation. We assumed a con-
stant debris surface albedo of 0.3 (Rounce and McKinney,
2014; Schauwecker et al., 2015). Computation of the insola-
tion at the time of the UAV flights was done using a Python
implementation of the R package “insol” (Corripio, 2003).
The model determines the solar geometry (Iqbal, 1983) and
estimates the atmospheric transmissivities (Bird and Hul-
strom, 1981) based on a digital elevation model, which in
our case was generated from the optical UAV images. Atmo-
spheric attenuation was calculated using the relative humid-
ity and air temperature, from ERA5-Land hourly reanalysis
data at each time of flight (Muñoz Sabater, 2019). We also
accounted for cast shadows by the surrounding topography,
based on a 0.5 m resolution digital elevation model with a
larger footprint (Swisstopo, 2021).

Net longwave radiation results from the difference be-
tween incoming longwave radiation (LW↓) and outgoing
longwave radiation (LW↑). LW↓ is the same as in Eq. (1)
and based on ERA5-Land data. LW↑ is a function of the LST
and the surface emissivity (see Sect. 0) and calculated fol-
lowing Stefan–Boltzmann’s law LW ↑= εσLST4. The latent
heat flux (LE) is assumed to be 0, as the debris surfaces were
dry during the UAV flights.

The sensible heat flux H was estimated using the
bulk aerodynamic approach assuming a neutral atmosphere
(Nicholson and Benn, 2006; Steiner et al., 2018; Nakawo and
Young, 1982; Rounce and McKinney, 2014):

H = ρair
P

P0
caCbtu(Tair−LST) , (3)

where ρair is the air density at sea-level pressure (kg m−3);
P0 is the atmospheric pressure at sea level (Pa); P is the
atmospheric pressure at site elevation (Pa), calculated fol-
lowing Iqbal (1983); ca is the specific heat capacity of air
(J−1 kg−1 K−1) (Brock et al., 2010; Barry et al., 2022); u is
the wind speed (m s−1); Tair is the air temperature; and Cbt
the bulk transfer coefficient given as

Cbt =
k2
∗

ln( zu
z0
) ln( zt

z0
)
, (4)

where k∗ is the Kármán constant (0.41), z0 is the surface
roughness length (Rounce and McKinney, 2014; Stewart et
al., 2021), and zu and zt are the measuring height (m) for
wind speed and air temperature. The meteorological input

data u and Tair were taken from ERA5-Land hourly reanaly-
sis data (Muñoz Sabater, 2019).

The conductive heat transfer through the layer of debris
and into the ice can be described by Fourier’s law assuming
a homogeneous layer of debris:

G=−k
∂T

∂z
≈−k

LST− Tdi

d
, (5)

where ∂T
∂z

is the temperature gradient in the debris layer and k
the effective thermal conductivity (W m−1 K−1). We assume
a linear temperature gradient in the debris layer and thus ∂T

∂z
to be equal to the difference between the LST and the tem-
perature of the debris–ice interface (Tdi), which we assume
to be at the melting point 0 ◦C. The assumption of a linear
temperature gradient applies only approximately and for thin
debris thicknesses (<10 cm) (Conway and Rasmussen, 2000;
Nicholson and Benn, 2006; Rounce and McKinney, 2014).
The average diurnal temperature profile through a layer of
debris can be considered linear, but at sub-daily time inter-
vals, the profile varies in its degree of linearity (Reid and
Brock, 2010). We come back to this point in the Discussion.

Solving the surface energy balance at sub-daily time inter-
vals requires knowledge of the energy flux due to the change
of heat stored in the layer of debris (1S) (Brock et al., 2010).

1S = ρdcd
∂T d

∂t
d, (6)

where ρd is the debris density (kg m−3), cd the specific
heat capacity of debris (J kg−1 K−1), d the debris thickness
(m), and ∂T d

∂t
the average rate of mean debris temperature

change (K s−1) with T d as the mean debris temperature,
(LST+ Tdi)/2, and t the time. Our sub-daily multitemporal
LST measurements allow us to estimate temporal changes
in LSTs, but these are very sensitive to uncertainties in the
LST measurements (see Sect. 3.2). To avoid such issues, we
rely on the diurnal temperature cycle and fitted a linearized
harmonic sine function (Shumway and Stoffer, 2000) to the
temperature data of each pixel. The first derivative with re-
spect to time of this function is the warming/cooling rate and
can be used to calculate the change in the heat storage term.

3.6 Debris-thickness estimation

As both the stored heat flux (1S) and the conductive heat
flux (G) in the surface energy balance model (SEBM) are a
function of the debris thickness, the surface energy balance
model (Sect. 3.5) can be described by a quadratic equation in
the form of

d2

(
−pdcd

∂T d

∂t

)
+ d (SW+LW+H)− k(LST− Tdi)= 0. (7)

Solving for debris thickness was done using the quadratic
formula

d =
−b+

√
b2− 4ac

2a
, (8)
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Table 1. Parameters used in the surface energy balance model.

Model parameter Symbol Unit Value

Debris albedo αd – 0.30
Ice albedo αi – 0.64
Debris emissivity εd – 0.94
Ice emissivity εi – 0.97
Effective thermal conductivity k W m−1 K−1 0.96
Surface roughness length z0 m 0.016
Measurement height air temperature zt m 2
Measurement height wind speed zu m 10
Debris density ρd kg m−3 1496
Debris-specific heat capacity cd J kg−1 K−1 948
Specific heat capacity of dry air ca J kg−1 K−1 1010
Standard sea-level pressure P0 Pa 101 325
Air density at sea-level elevation ρair kg m−3 1.29

with a =−ρdcd
∂T d
∂t

, b = S+L+H , and c =−k(LST−Tdi).
Note that the quadratic equation has mathematically two so-
lutions, whereas only one is physically plausible.

In addition to the SEBM approach, we also estimated de-
bris thickness for each LST map using a rational curve (Mc-
Carthy, 2019; Boxall et al., 2021) of the form

d =
LST

c1+ c2LST
, (9)

where c1 and c2 are empirically derived coefficients by a least
squares regression.

To evaluate the performance of the two approaches for
predicting debris thickness, we used the RMSE between the
predicted and the observed debris thickness at the sites sur-
veyed in the field (Sect. 3.1). To account for the accuracy of
the handheld GPS device, we used the mean variable values
within a 2 m radius buffered region around the GPS coordi-
nate. Sites for which the SEBM approach did not yield a real
and positive number were excluded from the comparison. We
discuss the causes for these unphysical solutions in detail in
Sect. 5.1. To evaluate the least squares regression of the ratio-
nal curve we divided the observed debris-thickness data into
a testing (n= 45) and training (n= 45) dataset. The training
dataset has been used to derive the model coefficients c1 and
c2, while the testing dataset was used to compare the mod-
eled debris-thickness estimates with the field observations.

4 Results

4.1 Land surface temperature and its diurnal variation

The LST changes over the day in a cyclic manner (early
morning cool – afternoon hot – evening cool), and conse-
quently the ability to estimate debris thickness using LST
changes accordingly (Fig. 3). Unlike satellite-derived LST
observations, our diurnal LST measurements allow us to
show how this relationship changes throughout the day.

Table 2. Mean LST and standard deviation (1σ) of the debris and
ice surface type.

Local flight Mean± 1σ Mean± 1σ
time (h) (debris) ◦C (ice) ◦C

09:00 7.28± 4.60 1.71± 1.43
11:00 10.68± 7.69 0.87± 1.87
13:00 19.52± 7.13 1.43± 2.87
15:00 21.44± 6.16 1.51± 2.32
17:00 13.31± 4.46 2.26± 2.84
19:00 8.10± 3.76 1.16± 1.56
21:00 5.31± 2.80 1.31± 1.56
22:00 4.59± 2.99 0.72± 0.77

LST and debris thickness are generally positively corre-
lated, but the suitability of a linear model to describe the
relationship varies throughout the day with better correla-
tion for cooler temperatures in the evening hours (Fig. 4f–
h). In the afternoon hours when the debris surface reaches its
maximum diurnal temperature, the relationship between de-
bris thickness and LST shows its non-linear nature (Fig. 4c–
e). Additionally, we observe the influence of the terrain as-
pect: east- and south-facing slopes heat up earlier compared
to west- and north-facing slopes (Fig. 4a, b) (Crameri et al.,
2020).

The effect of the terrain aspect is not evident during the
cooling phase in the afternoon and evening. The spatial and
temporal variability of the LSTs (Fig. 3) shows that at all
flight times, surface temperatures are higher at the edges of
the glacier (NW and SE) and lower in the central part of the
test area. This pattern corresponds to high debris thicknesses
at the glacier margins and thin debris thicknesses or no debris
occurrence in the middle part. The mean LST of the debris
cover follows the expected pathway of a diurnal temperature
cycle (Table 2).
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Figure 3. Spatiotemporal distribution of the land surface temperature (LST). Panels (a–h) show the eight individual flights, describing a
large fraction of the diurnal land surface temperature variation. The maps have a spatial resolution of 15 cm and are colorized in dark blue
for LST<0.5 ◦C. Due to the residual uncertainties of the LSTs, ice surface geometries appear inconsistent with time. The southeast region of
panel (b) (11:00 UTC+1) shows an unreasonable cold temperature due to a failed calibration.

Figure 4. The temporal variation of the land surface temperature (LST) against in situ-measured debris thickness. Panels (a–h) show the
arithmetic mean land surface temperature of a 2 m buffered region around the GPS coordinates of debris-thickness measurements colorized
for terrain aspect with 0/360◦ facing north. The LST of the warming phases (a–d) is more strongly influenced by the aspect than the cooling
phases (e–h). The non-linear nature of the relationship between the LST and debris thickness is noticeably pronounced for higher LSTs (c–e),
while the correlation for low LSTs appears more linear (f–h).

While the general spatial and temporal pattern of LSTs
seems to be reasonable, some areas of concern exist locally.
First, the southeastern region of the 11:00 flight shows an un-
reasonable cold temperature patch, which most likely does
not represent the actual LST at that time. Instead, we suspect
that this artifact corresponds to an uncorrected bias of the
thermal correction and calibration process. We come back to
this point in the Discussion. Second, the 15:00 flight shows
a centrally located, transverse-oriented strip of higher LSTs,
which seems to follow the flight path of the UAV. The direc-
tional temperature mismatch could be related to an oblique
viewing angle of the sensor, as the nadir alignment was set
up manually, and the angle of observation might partly con-

trol the amount of radiation received by the sensor and thus
the temperature measurement (Norman and Becker, 1995).

In the absence of any other means to assess the precision
of the LST values, we suggest that the variability of the bare-
ice surface temperatures, which ought to be at 0 ◦C, might
indicate the bias and precision of the LSTs. The LST values
of ice surface temperatures vary by several degrees with a
standard deviation of up to 2.87 ◦C (Table 2). Mean ice LSTs
range between 0.72 and 2.26 ◦C throughout the day (Table 2).
Field observations show that ice cliffs on the TNG are often
sprinkled with small rocks and/or a thin layer of dust, which
might influence the ice LSTs towards warmer temperatures.
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Figure 5. Sinusoidal regression of mean debris temperature (T d),
estimated from LSTs (Eq. 6) for each pixel. (a) The panel shows
the time at which T d reaches its maximum diurnal temperature and
thereby emphasizes the effect terrain aspect. (b) The RMSE of the
regression for each pixel. The southeastern region with larger errors
is due to the anomalies in the LST at 11:00 (UTC+1); see the text
for details. The spatial mean of the RMSE is 1.51 ◦C, and the stan-
dard deviation is 0.54 ◦C. The panels (c–f) are example points of the
sine function used to derive the warming/cooling rate in each pixel.
Locations of the examples are indicated in panels (a) and (b).

Based on the LST measurements, we estimated the diurnal
variation of the depth-integrated mean debris temperature.
The pixel-wise fitted harmonic sine functions allow us to es-
timate the spatially distributed warming and cooling rates, as
the first derivative with respect to time. The RMSE of the fit
(mean±1σ) is 1.51±0.54 ◦C. The spatial distribution of the
RMSE (Fig. 5b) is relatively continuous but shows variability
where the before-mentioned local LST discrepancies occur.
Figure 5a shows that, depending on the aspect, at 13:00 and
15:00 the debris surface reaches its maximum LST, and con-
sequently the temperature change rate converges to zero.

4.2 Surface energy balance modeling

To solve the surface energy balance (Eq. 2) we determined
the LST-independent energy flux component SW and the
LST-dependent components LW, H , 1S, and G, based on
the UAV-derived LST maps shown in Fig. 3. In Fig. 6, we
show the diurnal variation of each component, evaluated at
all locations where we obtained debris-thickness measure-
ments.

East- and south-facing slopes receive their maximum net
shortwave radiation (SW) prior to the west- and north-facing
slopes (Fig. 6b), which explains their earlier increase in LSTs

(Fig. 6a). By 15:00, all sites attained the daily maximum
LST and cool down from then on. Despite the remaining dif-
ferences in SW, no more aspect-related differences in LSTs
can be observed. All the remaining SEBM components are
a function of the LSTs and thus also show an aspect depen-
dency before 15:00. The net longwave component (LW) ex-
pectedly mirrors the LSTs (Fig. 6c). The sensible heat flux
(H), calculated using the bulk approach (Eq. 3), attains only
low flux values close to 0, which is likely related to the
low wind velocities (<1 m s−1) obtained from reanalysis data
(Table 3). The rate of change in heat storage within the de-
bris (1S) and the conductive heat flux (G) are, besides the
LSTs, a function of the debris thickness (Eq. 6, Fig. 6e, f).
Whereas 1S attains the largest magnitudes in the morning
and evening hours and where the debris is thick, the opposite
is true for G, which is largest at 15:00 and where the debris
is thin.

4.3 Debris-thickness estimates from SEBM

The SEBM-derived predictions of debris thickness (Fig. 7)
show a general pattern that matches observations in the field
and the pattern of measured LSTs. Predicted debris thick-
nesses generally range between 0 and 30 cm. Given the cho-
sen input parameters, Eq. (8) cannot be solved for all pixels
in the first half of the day (09:00 to 15:00) (Fig. 7a–d).

At these times the quantities of the surface energy balance
components and the relatively low LSTs lead to a negative
term under the root in Eq. (8) and thus to no valid solution.
Predictions of thicker (>10 cm) debris are primarily found
in the afternoon and evening hours (17:00 to 22:00), and the
pattern of thin debris (<10 cm) predictions, primarily in the
central part of the glacier, is relatively consistent in time.

Comparing the predictions to field observations (Fig. 8)
shows that the accuracy of the prediction remains compa-
rable throughout the day with an RMSE of 6 to 8 cm. For
most of the flights, we find a positive correlation between
the predictions and observations, even if they do not follow
the 1 : 1 line. During the warming phase of the day, when the
aspect has a strong influence on LSTs (Fig. 4a–c), the associ-
ated debris predictions do not show an aspect-related pattern.
In contrast, debris-thickness predictions based on the after-
noon flights at 17:00 and 19:00 seem to correlate with aspect
whereas the LST data do not.

Absolute values of predicted thin debris cover are less
sensitive to the time of the day, compared to thick debris.
Figure 9a shows the variation of the predicted thicknesses
with time along the profile introduced in Fig. 1b as the mean
value ±1σ . The spatial variability of the standard deviation
is shown in Fig. 9d. As the SEBM does not yield a valid
solution for all times of the day, Fig. 9e additionally shows
the number of valid predictions in time. Towards the glacier
edges where the debris is greater than 10 cm, the spread
in the standard deviation increases, compared to the central
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Figure 6. Energy fluxes at debris-thickness measurement locations. Diurnal variations of (a) land surface temperature, LST; (b) net shortwave
radiation, SW; (c) net longwave radiation, LW,; and (d) sensible heat flux,H , with lines colorized by terrain aspect with 0/360◦ facing north.
Diurnal variations of (e) the change in heat storage,1S, and (f) the conductive heat flux,G, with lines colorized by debris thickness measured
in the field. Note that only SW (b) is independent of LSTs, whereas data in panels (c–f) are a function of LSTs.

Table 3. ERA5-Land hourly reanalysis data on 30 August 2019 interpolated at the Tsijiore Nouve Glacier, Switzerland (46.01◦ N, 7.46◦ E).

Local flight Incoming longwave Wind speed, Air temperature,
time (h) radiation, LW↓ (W m−2) u (m s−1) Ta (◦C)

09:00 311.03 0.35 6.64
11:00 304.38 0.45 10.29
13:00 304.05 0.48 11.69
15:00 307.31 0.85 12.09
17:00 308.26 0.87 10.24
19:00 307.46 0.41 8.98
21:00 306.71 0.46 7.74
22:00 306.19 0.60 7.20

part, showing that the prediction of thick debris cover varies
stronger in time than for thin debris cover.

4.4 Debris-thickness estimates by extrapolating a
rational curve

The debris-thickness maps created by the extrapolation ap-
proach using a rational curve result in slightly thicker predic-
tions than following the SEBM approach (Fig. 10). The gen-
eral pattern of the spatial debris-thickness distribution fol-
lows the field observations and the pattern of measured LSTs,
similar to the results of the SEBM approach. The modeled
debris thicknesses vary between 0 and 30 cm but with early
flights at 09:00 and 11:00 lacking predictions greater than
10 cm (Fig. 10a, b).

We divided (Pedregosa et al., 2011) the dataset of n= 90
samples into a training (n= 45) and testing (n= 45) dataset.
Figure 11 shows training and testing data for each flight time,
including the coefficients c1 and c2, derived by least squares
regression of Eq. (9) and the RMSE between the predictions
and the observations of the testing data (Fig. 11). Similar to
the SEBM, the RMSE ranges between 6 and 8 cm, but debris
thicknesses >10 cm are better represented in the extrapola-
tion approach and thus follow more closely the 1 : 1 line. At
09:00, 11:00, and 15:00 the RMSE is highest at 8 cm, and
the shape of the curve already shows that the model does not
represent the data well. The aspect dependency of the LSTs
at these times (Fig. 4a, b) was not considered as an additional
parameter for the regression and thus results in a curve that
does not represent the shape of the data well (Fig. 11a, b).
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Figure 7. Estimated debris thicknesses for each flight time. White regions show regions where the surface energy balance model has no
valid solution for debris thickness due to high uncertainties in the land surface temperature and reanalysis data. The histograms show the
distribution of the predicted debris thicknesses displayed in the maps.

Figure 8. Comparison of modeled and observed debris thickness for each flight time (a–h) with RMSE values (m) for model evaluation.
Sample points are colorized by terrain aspect and the dashed grey line shows the 1 : 1 line. RMSE for flights (a, b, c) is based on a reduced
sample number.

The afternoon flights between 17:00 and 22:00 have the low-
est RMSE with 6–7 cm.

The diurnal stability in predicting debris thickness (Fig. 9;
diurnal mean± 1σ debris-thickness predictions along the
profile line shown in Fig. 9f) shows that thin debris cover,
as found in the central part of the profile line, remains stable
throughout the day and is thus comparable to the results of
the SEBM approach. For thicker debris the spread of the stan-
dard deviation is higher, showing that predicting thick debris
cover depends more on the time of the day than thin debris.
Even though the range of the RMSE throughout the day re-
mains comparable to the SEBM results, for some flights (e.g.,
19:00) the average prediction accuracy improves by about
2 cm.

5 Discussion

5.1 Predicted versus observed debris thickness

Debris-thickness predictions with the SEBM approach
yielded mixed results. The fact that the modeled debris thick-
ness does not vary in unreasonable ways across the glacier
surface, but in a systematic pattern, shows that mapping high-
resolution debris thickness with UAVs has some potential.
During most of the flights, we observe a general positive cor-
relation between the modeled and observed debris thickness
(Fig. 8b–h). The overall relationship between higher surface
temperature and thicker debris that is evident in the input
data (Fig. 4) can be reproduced. However, given the cho-
sen parameters, we are unable to obtain a non-biased match
between the observed and modeled debris thickness. The
SEBM approach mostly underestimates debris thickness at
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Figure 9. Diurnal mean± 1σ debris-thickness predictions along the profile line shown in Fig. 1. (a) The predictions using the surface
energy balance model (SEBM) show a larger spread of the standard deviation (grey) towards the edges and smaller towards the central part
corresponding to regions of thicker and thinner debris cover. Panel (b) shows the results of the rational curve extrapolation approach. A
smaller spread indicates greater consistency in the prediction over the day. (c) The diurnal variability of the land surface temperature along
the profile line. Panels (d, f) show the spatial variation of the standard deviation and (e) the number of valid solutions in the SEBM approach.

Figure 10. Estimated debris thickness using a rational function for each flight time. The histograms show the distribution of the predicted
debris thicknesses displayed in the maps.

all flight times compared to field measurements. For thick
debris cover, this underestimation is more pronounced than
for thin debris (<10 cm).

Over the course of the day, the RMSEs between observed
and predicted debris thicknesses range from 6 to 8 cm. For
many pixels in the flights at 09:00, 11:00, and 13:00 and
some pixels at 15:00 (Fig. 7a–d) the quadratic equation
(Eq. 7) has no real solution, and the SEB cannot be solved
for debris thickness. The reason for this is a negative term
in the square root of Eq. (8), which occurs if b2 < 4ac. Re-
call that b accounts for the radiative and sensible heat fluxes
(SW+LW+H), whereas a and c are the conductive heat
flux and the storage term, respectively. As long as LST>0 ◦C,
c is always negative. The inequality condition above can
thus only occur if also a is negative, which is only possible

when the debris is heating up, in our case until about 15:00
(Figs. 5a, 6e). That explains why many pixels in the morn-
ing flights have no debris-thickness solution. Furthermore,
at 09:00, the term b2 is rather small, mostly because of low
SW values. However, at 11:00 and 13:00 southeast-exposed
pixels receive higher SW (Fig. 6b), which causes b to in-
crease, making the inequality condition less likely. The most
likely reason for no physical solution to Eq. (7) is inaccurate
values of LSTs and reanalysis-derived variables. Mostly dur-
ing the morning, even small deviations from true values are
sufficient to find no physically meaningful debris-thickness
solution. For thin debris (<2 cm), G is very sensitive to un-
certainties in LSTs and leads to large negative numbers. This
is a major drawback of the SEB approach, and it highlights
the sensitivity of the approach to uncertainties in the input
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Figure 11. Least squares regression of a rational function of 50 % of the debris-thickness measurements (n= 45) with the arithmetic mean
land surface temperature of a 2 m buffered region around the GPS coordinates of debris-thickness measurement locations (training data)
(a–h). The adjacent panels show the comparison of modeled and observed debris thickness of the other 50 % (n= 45) with RMSE values to
evaluate the prediction (testing data). Sample points are colorized by terrain aspect.

data. We note that these uncertainties prevail, even if a solu-
tion is found. However, compared to the ground observations
of debris thickness the model predictions show a positive cor-
relation.

As a result of spatially incomplete debris-thickness maps,
the number of sample points to evaluate the quality of the
prediction is reduced (see low n in Fig. 8a–c) and should be
kept in mind when comparing the RMSE with respect to the
time of the day. Previous studies did not face this issue, in
part because 1S was incorporated as a fraction of the con-
ductive heat flux G, which is always negative (Foster et al.,
2012; Schauwecker et al., 2015). Comparison of 1S and G
for the sites where we measured debris thickness shows that
such an assumption appears to be invalid for most times of
the day (Fig. 5). By estimating 1S using the warming/cool-
ing rate from multitemporal LST measurements, we can bet-
ter account for this energy balance component, but these es-
timates are also prone to uncertainties in LSTs. In general,
however, the magnitude and distribution of SW, LW, and1S
for most of the sample locations compare well to values de-
termined by Brock et al. (2010) with an automatic weather
station (AWS) at the Miage Glacier at comparable latitude,
time of the year, and elevation (500 m difference).

Debris-thickness predictions below ∼ 10 cm seem to cor-
relate reasonably well with field observations, whereas pre-
dictions of thicker debris cover are generally too low (Fig. 8).
This may indicate that uncertainties in parameters that are
unlikely to vary spatially or as a function of debris thick-
ness are not particularly relevant. To further test this hypoth-
esis, we performed sensitivity tests of SEBM-derived debris-
thickness estimates to variations in the input parameters air

temperature, wind speed, thermal conductivity, albedo, and
surface roughness length (Fig. 12). Variations of the param-
eters air temperature, albedo, and surface roughness length
across value ranges commonly found in the literature (Brock
et al., 2000; Foster et al., 2012; Schauwecker et al., 2015;
Shaw et al., 2016; Miles et al., 2017) result in generally small
variations of the mean debris thickness (averaged across the
entire studied surface). In consequence, the impact on the
RMSE when evaluated against our field observations of de-
bris thickness is also small. Only the flights at 09:00, 11:00,
and 13:00 show more significant variations in the RMSE,
but these correspond to simultaneously low coverage of valid
predictions and thus only small numbers of sample points to
estimate the RMSE (Fig. 9).

The same is essentially true for wind speed, which is a no-
toriously difficult parameter to constrain in any surface en-
ergy balance model (Schauwecker et al., 2015; Stewart et al.,
2021) and is a strong control of the sensible heat flux (Eq. 3).
ERA5-derived wind speed during the time of our experiment
is relatively low at <1 m s−1, whereas wind speeds of ∼ 2–
4 m s−1 are not uncommon in the vicinity of glaciers (e.g.,
Oerlemans and Greuell, 1986; Brock et al., 2010; Steiner et
al., 2018). During a different visit to the TNG in 2021, we op-
erated a small AWS for a full day and obtained wind speeds
of 2.5–4 m s−1, which were higher than ERA5-derived wind
speeds of 0.5–2 m s−1 for the same day. Although we do not
know what the actual wind speed was during our experiment
in 2019, increasing the wind speed and solving for debris
thickness have a minor effect on flights from 17:00 onwards,
whereas for earlier flights, the coverage quickly drops to low
values. This is related to the fact that larger negative H val-
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Figure 12. Sensitivity of debris-thickness prediction using a surface energy balance model (SEBM) to the parameters air temperature, wind
speed, effective thermal conductivity, albedo, and surface roughness length. For each flight time, each parameter was varied across a range
of values and debris thickness maps were created. Each column shows colorized (1) modeled mean debris thickness averaged over all pixels
in the test area, (2) RMSE between the observed and predicted debris thicknesses, and (3) coverage of valid predictions as the surface energy
balance model cannot always be solved. The white dot in modeled mean debris thickness shows the mean debris thickness observed in the
field.

ues reduce b (i.e., the sum of the radiative and sensible heat
fluxes, SW+LW+H), thereby increasing the likelihood to
obtain a negative term in the square root of Eq. (8). Simi-
lar effects also account for changes in coverage for the other
parameters. We thus emphasize that changes in RMSE dur-
ing flights until about 15:00 that are associated with changes
in coverage do not necessarily indicate better model perfor-
mance. The high sensitivity of the SEBM approach to uncer-
tainties in LSTs and the reanalysis data reduces the suitability
to reliably estimate debris thickness.

The only tested parameter that has a more pronounced ef-
fect on the mean debris thickness and RMSE without chang-
ing the coverage is the thermal conductivity (k) through its
influence on the conductive heat flux, G. Higher k values
result in greater energy losses to the ice and a higher de-
bris thickness for the same LSTs. A similar effect has been
achieved by Rounce and McKinney (2014) by introducing
a factor to account for the non-linearity of the temperature
profile in the debris cover (Bird and Hulstrom, 1981).

It should also be noted that the effective thermal conduc-
tivity k is likely to vary spatially, as thick debris cover can
hold more moisture, which thus leads to higher values of k
(Steiner et al., 2021). Additionally, a thin debris cover com-
posed of smaller grain sizes may have a different pore space
than a layer of thick debris cover consisting of larger grain
sizes. The bulk debris-void space and thus the effective con-
ductivity could vary with debris thickness, too. Because the
effective thermal conductivity of a debris layer and its spa-

tial variability is a rather complex quantity that is not easily
measured, this parameter could be used as a free parameter
to tune the debris-thickness map against field observations.

Debris-thickness predictions using least squares regres-
sion of a rational curve yield RMSE values between 6 and
8 cm, similar to the results of the SEBM approach. The
pattern of spatially distributed debris-thickness estimates
(Fig. 10) follows the expected spatial pattern of the LSTs
for each time of the day. The range of predicted debris thick-
nesses corresponds to the field observations with values sim-
ilar to the SEBM approach, between 0 and 30 cm. As the
LST varies throughout the day, the suitability of the ratio-
nal curve regression to estimate debris thickness varies too.
For instance, at 09:00 and 11:00, LST depends strongly on
the terrain aspect, and thus the results are biased towards the
aspect (Fig. 11a, b). Nevertheless, at 13:00 the RMSE be-
tween observations and predictions (Fig. 11c, testing data)
is still 7 cm. This suggests that during the times when the
debris is heating up, the regression of a rational curve would
benefit from taking the terrain aspect into account, i.e., by fit-
ting a parametric surface to the data. In addition, the strongly
non-linear relationship between LST and debris thickness
at 09:00 and 11:00 limits predicted debris thicknesses to
<10 cm. The predictions at these flight times show unrealis-
tic uniform values in the same regions at which the SEBM
approach cannot be solved. This supports the SEBM ap-
proach and indicates that the LST at this time is too low to
relate it to debris thickness. When the debris is cooling down
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in the evening (Fig. 11e–h), the aspect has a minor effect, and
the curve appears to satisfy the available data. When LST is
low (morning and evening), the relationship between LST
and debris thickness seems to be almost linear, and a simple
linear regression is expected to result in comparable accu-
racy. This agrees with the findings of Boxall et al. (2021),
based on satellite-derived LSTs.

5.2 Opportunities and limits of UAV-derived LSTs for
debris-thickness mapping

High-resolution studies can improve our understanding of
processes that move and distribute debris on glacier surfaces
(Westoby et al., 2020). Spatiotemporal debris-thickness esti-
mates using UAV-derived thermal images have the potential
to serve as a new approach to quantify how debris is mobi-
lized across the surface of the glacier over short timescales.
The detailed representation of surface features, such as ice
cliffs, large boulders (Fig. 13), or surface ponds, makes UAV-
derived LST measurements a valuable tool for debris cover
research.

So far, the conversion of LST to debris thickness in high
resolution has only been studied using ground-based oblique
viewing angles (Herreid, 2021) using empirical equations.
However, challenges in this approach include (1) the area
covered by the field of view, (2) the variable path radiance,
and (3) the viewing angle that controls the amount of radia-
tion received by the sensor. The use of UAVs offers opportu-
nities to overcome these issues but also faces challenges that
we discuss here. These challenges stem from the specifics
of image acquisition, limited battery lifetime, postprocessing
requirements, and the conversion of the brightness tempera-
ture to LSTs.

All high-resolution studies, including ours, have so far
used uncooled microbolometers, a sensor type that requires
thermal equilibrium between the sensor device and the en-
vironment for accurate measurements (Budzier and Gerlach,
2015). As these conditions are difficult to achieve and main-
tain in high-mountain settings, the obtained thermal infrared
images require calibration and correction. The ambient tem-
perature difference between the ground and the flight eleva-
tion requires the sensor device to thermally adjust after take-
off, which thus introduces a measurement bias that varies
with time (Fig. 2a). While this effect is primarily relevant
for UAV applications, the maintenance of stable environ-
mental conditions (e.g., changing wind speeds) cannot be
guaranteed even for ground-based measurements, and tem-
poral variance of the measurement bias should be considered.
While the sensor device cools down after takeoff due to flight
altitude, direct incident shortwave radiation may cause the
device to heat up (Dugdale et al., 2019). The change in the
measurement bias with time, the thermal drift, is partially
balanced by the internal in-flight calibration of uncooled
microbolometers (Mesas-Carrascosa et al., 2018), leading
to recurring systematic jumps in the measured temperature

(Fig. 2) that can be compensated for in a postprocessing step
(see Sect. 3.2). Long flight times, slow flight speeds, and no
direct shortwave radiation would thus minimize the effect of
thermal drift but would likely not substitute for additional
calibration.

The thermal correction during postprocessing in our case
included (1) recovering the occurrence of flat field correc-
tion (FFC) events that were “lost” by the reduced sampling
rate, (2) identifying and correcting the thermal drift, and (3)
correcting the residual measurement bias using bare-ice sur-
faces. During all flight times, thermal drift corrected for by
FFC events was rather large and resulted in changes by up to
∼ 8 K over 50 frames (Fig. 2a). With a frame rate of 1 s−1,
this means a thermal drift of up to 0.16 K s−1. Assuming that
the thermal drift is indeed linear with time, the in-flight FFC,
or, as in our case, postprocessing identification of FFC, is
relatively straightforward, due to the step change in LSTs
across an FFC event. Figure 2a also shows the internal hous-
ing temperature and the temperature of the focal plane array,
as recorded by the thermal sensor. The rapid decline, in the
beginning, shows the thermal adjustment due to the vertical
temperature gradient between the ground and flight eleva-
tion. While UAVs with larger battery capacity might offset
this effect to some extent, our setup was limited at that point.

To convert the brightness temperature to LSTs, we ac-
counted for the reflected portion of the incoming longwave
radiation and surface-type emissivity but neglected the path
radiance between the sensor and the ground. As the eleva-
tion of the UAV aboveground does not change significantly
throughout the flight, the potential measurement bias of long-
wave radiation emitted by atmospheric water vapor content is
minimized and assumed to be constant. Our “bulk” calibra-
tion approach using spline interpolation of measured ice sur-
face temperatures compensates for the systematic temporal
variability of the measurement bias (Fig. 2b) introduced by
(1) thermal adjustment after takeoff, (2) fluctuations of atmo-
spheric conditions by wind or incident direct shortwave radi-
ation, or (3) longwave radiation emitted from atmospheric
water vapor content or the surrounding terrain (Aubry-Wake
et al., 2015; Aragon et al., 2020; Herreid, 2021).

Because of the need to calibrate all thermal images, the
requirement of spatially well-distributed reference tempera-
tures is the main drawback of the proposed method. In our
case, bare-ice surfaces were present in the central part but
not at the glacier’s sides. Two image regions are found to be
severely erroneous, an anomalously low-temperature patch
on the eastern edge at 11:00 and a warm-temperature strip in
the center that seems to follow the flight path of the UAV at
15:00 (Fig. 3b, d). We think the cold region at 11:00 could
be due to a failed drift compensation, as the spline interpola-
tion assumes a constant correction value before the first and
after the last occurrence of bare ice in the thermal images.
The warm-temperature strip could be related to an oblique
viewing angle of the sensor during that flight, as the sensor
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Figure 13. High-resolution subsection of the unpiloted aerial vehicle (UAV) imagery with debris cover, large boulders, and an ice cliff. The
panels show (a) the RGB image, (b) the land surface temperature at 15:00 (UTC+1), (c) debris-thickness prediction using the rational curve
approach, and (d) debris-thickness prediction by solving the surface energy balance model. The difference map (e) and 2D histogram (f)
show how the model predictions compare spatially.

alignment was done manually (Sobrino and Cuenca, 1999;
Byerlay et al., 2020; FLIR, 2020).

So far, we have discussed the challenges and needs to de-
rive glacier surface LSTs. Provided the measurements ob-
tained in our experiment, we also observed differences in the
resulting debris thickness that we derived from the SEBM
and the rational curve approaches. The SEBM approach
requires meteorological input data, assumptions on debris
properties (in space and time), and substantial simplifications
of SEB components. Because the conservation of energy rep-
resents a balance among all energy fluxes, it follows that
any simplification in one component will have a quantita-
tive effect on the others (Price, 1985). However, when com-
paring the diurnal variation of the energy flux components
with measured quantities in a comparable setting regarding
location, time, and debris thickness (Brock et al., 2010), we
find good agreement in magnitude and distribution for net
shortwave, net longwave, and change in heat storage and the
conductive heat flux (Fig. 6). The possibility to estimate sub-
daily surface energy balance components improves our un-
derstanding of 1S. Repeated LST measurements might ad-
ditionally increase understanding of the spatial variability of
debris properties (e.g., thermal conductivity, debris density,
or specific heat capacity) by quantifying the thermal inertia.

The accuracy of predicting debris thickness using a SEBM
and empirically using a rational curve yielded comparable
results with RMSEs of 6–8 cm depending on the time of the
day. Both methods yield a terrain aspect bias. The SEBM ap-
proach compensates for the terrain effect to some degree, as

the amount of incident shortwave radiation is a function of
aspect, too. The terrain bias in the early flights using the ra-
tional curve approach is more pronounced, as it is only based
on the LSTs. However, as this approach is less sensitive to
uncertainties in LSTs, we recommend the rational curve ap-
proach to estimate debris thickness as long as enough debris-
thickness measurements are available. Steep moraines of de-
bris or hummocky-shaped debris-covered surfaces are likely
to introduce bias via mixed-pixel effects, when predicting de-
bris thickness using coarse-spatial-resolution LSTs from re-
mote sensing data, especially in the case of empirically de-
rived debris thicknesses. For example, the time of overpass of
the Landsat satellite is typically between 10:00 to 11:00 lo-
cally, a time when debris cover is still heating up. Therefore,
the effect of aspect on satellite-derived LST debris-thickness
estimates should be studied in more detail.

6 Conclusions

In our experiment, we mapped supraglacial debris cover us-
ing high-resolution UAV-derived LST measurements at var-
ious times of the day and using two common approaches to
create debris-thickness maps: a surface energy balance model
approach and a simple extrapolation approach using a ratio-
nal curve that relies on field measurements. We conclude the
following:

1. Measuring the LSTs from a UAV using an uncooled
microbolometer requires temperature calibration that
varies with time. Here we determine an offset correc-
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tion value for each thermal infrared frame by interpo-
lating splines of spatially well-distributed bare-ice sur-
faces, assuming the ice to be at a melting point of 0 ◦C.
This bulk correction compensates for several sources of
uncertainties but requires the presence of bare-ice sur-
faces.

2. Quantifying the surface energy balance components
based on the UAV-derived LST measurements led to
debris-thickness predictions with an RMSE of 6–8 cm,
depending on the time of the day. Debris thicknesses
were underestimated at all flight times. Measuring the
diurnal variability of LSTs allowed us to extend the
commonly used surface energy balance approach by
quantifying the rate of change of heat storage.

3. The non-linearity of the relationship between LST and
debris thickness increases with LST. Choosing the best
empirical function for predicting debris thickness thus
depends on the time of the day. Morning conditions
yield a strong terrain aspect bias, which is better ac-
counted for in the SEBM approach. When the LST
reaches its diurnal maximum, here at 13:00 or 15:00,
the non-linearity is most evident. Towards the evening
the relationship between debris thickness and LST ap-
pears almost linear, and aspect plays a minor role.

4. Practical considerations for quantifying supraglacial de-
bris cover using UAV-derived LSTs comprise LST cal-
ibration, choosing the model based on the time of the
day, and debris-thickness measurements for evaluation.
In our case, the ultra-lightweight UAV setup was suit-
able for remote high-mountain fieldwork but had a sig-
nificant drawback due to the limited battery capacity,
resulting in short flight times of 10 to 15 min and small
spatial coverage. Consequently, the thermal adjustment
of the device led to strong thermal drift and thus to many
in-flight calibration events that had to be considered.
Maximizing the flight time by using a larger UAV could
offset this effect to some degree. The measurement bias
varies with time, and spatially well-distributed reference
temperatures should be used for calibration.
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