Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-4907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4907-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
U.S. Geological Survey Northern Rocky Mountain Science Center, West
Glacier, MT 59936, USA
Erich H. Peitzsch
U.S. Geological Survey Northern Rocky Mountain Science Center, West
Glacier, MT 59936, USA
Eric A. Sproles
Geospatial Snow, Water, and Ice Resources Lab, Department of Earth
Sciences, Montana State University, Bozeman, MT 59717, USA
Karl W. Birkeland
USDA Forest Service National Avalanche Center, Bozeman, MT
59771, USA
Ross T. Palomaki
Geospatial Snow, Water, and Ice Resources Lab, Department of Earth
Sciences, Montana State University, Bozeman, MT 59717, USA
Related authors
No articles found.
Haejo Kim, Eric Sproles, and Samuel E. Tuttle
The Cryosphere, 19, 3177–3191, https://doi.org/10.5194/tc-19-3177-2025, https://doi.org/10.5194/tc-19-3177-2025, 2025
Short summary
Short summary
Monitoring of a shallow and highly variable snowpack's water content has been shown to be reliable with cosmic ray neutron sensing (CRNS). After hundreds of simulations, we show a CRNS instrument is best placed near areas of low snow accumulation that are near regions of high snow accumulation for an accurate estimate of the prairie snowpack's water content. The snow water equivalent from a CRNS was 2 to 5 times more likely to be representative of the prairie snow, compared to traditional snow monitoring methods.
Erich H. Peitzsch, Justin T. Martin, Ethan M. Greene, Nicolas Eckert, Adrien Favillier, Jason Konigsberg, Nickolas Kichas, Daniel K. Stahle, Karl W. Birkeland, Kelly Elder, and Gregory T. Pederson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2217, https://doi.org/10.5194/egusphere-2025-2217, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Snow avalanches pose substantial risks to communities and public safety in Colorado. We studied tree growth patterns impacted by avalanches from 1698 to 2020 alongside meteorological data. We found variations in avalanche frequency revealing a decline in regional avalanche activity and shifts in the causes of these types of large and widespread avalanche events. This knowledge can enhance avalanche safety measures and infrastructure design.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Andrew R. Schauer, Jordy Hendrikx, Karl W. Birkeland, and Cary J. Mock
Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021, https://doi.org/10.5194/nhess-21-757-2021, 2021
Short summary
Short summary
Our research links upper atmospheric circulation patterns to a destructive and difficult-to-predict type of snow avalanche in the western United States. At each of our study sites, we find unique circulation patterns that tend to occur at the beginning of the winter season during years with major avalanche activity. We also find specific patterns that occur frequently in the days leading to major avalanche events. This work will enable practitioners to better anticipate these challenging events.
Erich Peitzsch, Jordy Hendrikx, Daniel Stahle, Gregory Pederson, Karl Birkeland, and Daniel Fagre
Nat. Hazards Earth Syst. Sci., 21, 533–557, https://doi.org/10.5194/nhess-21-533-2021, https://doi.org/10.5194/nhess-21-533-2021, 2021
Short summary
Short summary
We sampled 647 trees from 12 avalanche paths to investigate large snow avalanches over the past 400 years in the northern Rocky Mountains, USA. Sizable avalanches occur approximately every 3 years across the region. Our results emphasize the importance of sample size, scale, and spatial extent when reconstructing avalanche occurrence across a region. This work can be used for infrastructure planning and avalanche forecasting operations.
Cited articles
Adams, M., Bühler, Y., and Fromm, R.: Multitemporal Accuracy and
Precision Assessment of Unmanned Aerial System Photogrammetry for
Slope-Scale Snow Depth Maps in Alpine Terrain, Pure Appl. Geophys., 175,
3303–3324, https://doi.org/10.1007/s00024-017-1748-y, 2018.
Agisoft: Agisoft Metashape Professional (Version 1.6.6), Agisoft, 2020.
Alidoost, F. and Arefi, H.: Comparison of UAS-based photogrammetry software
for 3D point cloud generation: a survey over a historical site, ISPRS Ann.
Photogramm. Remote Sens. Spatial Inf. Sci., IV-4/W4, 55–61,
https://doi.org/10.5194/isprs-annals-IV-4-W4-55-2017, 2017.
Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial
variability in snow water equivalent for a high mountain catchment, Hydrol.
Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004.
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari,
D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric Accuracy
in Snow Depth Using Unmanned Aerial System Photogrammetry and a
MultiStation, Remote Sens.-Basel, 10, 765,
https://doi.org/10.3390/rs10050765, 2018.
Birkeland, K. W.: Spatial patterns of snow stability throughout a small
mountain range, J. Glaciol., 47, 176–186,
https://doi.org/10.3189/172756501781832250, 2001.
Birkeland, K. W., Hansen, K. J., and Brown, R. L.: The spatial variability
of snow resistance on potential avalanche slopes, J. Glaciol., 41, 183–190,
https://doi.org/10.3189/S0022143000017871, 1995.
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13,
2149–2175, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8, 1999.
Boesch, R., Bühler, Y., Marty, M., and Ginzler, C.: Comparison of
digital surface models for snow depth mapping with UAV and aerial cameras,
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 453–458,
https://doi.org/10.5194/isprsarchives-XLI-B8-453-2016, 2016.
Brandt, W. T., Bormann, K. J., Cannon, F., Deems, J. S., Painter, T. H.,
Steinhoff, D. F., and Dozier, J.: Quantifying the Spatial Variability of a
Snowstorm Using Differential Airborne Lidar, Water Resour. Res., 56, WR025331,
https://doi.org/10.1029/2019WR025331, 2020.
Buchmann, M., Begert, M., Brönnimann, S., and Marty, C.: Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements, The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, 2021.
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Bühler, Y., Adams, M. S., Stoffel, A., and Bösch, R.:
Photogrammetric reconstruction of homogenous snow surfaces in alpine terrain
applying near-infrared UAS imagery, Int. J. Remote Sens., 38, 3135–3158,
https://doi.org/10.1080/01431161.2016.1275060, 2017.
Carbonneau, P. E. and Dietrich, J. T.: Cost-effective non-metric
photogrammetry from consumer-grade sUAS: implications for direct
georeferencing of structure from motion photogrammetry, Earth Surf. Proc.
Land., 42, 473–486, https://doi.org/10.1002/esp.4012, 2017.
Cimoli, E., Marcer, M., Vandecrux, B., Bøggild, C. E., Williams, G., and
Simonsen, S. B.: Application of Low-Cost UASs and Digital Photogrammetry for
High-Resolution Snow Depth Mapping in the Arctic, Remote Sens.-Basel, 9, 1144,
https://doi.org/10.3390/rs9111144, 2017.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B.,
Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.:
Representing spatial variability of snow water equivalent in hydrologic and
land-surface models: A review, Water Resour. Res., 47, W07539,
https://doi.org/10.1029/2011WR010745, 2011.
Clemenzi, I., Pellicciotti, F., and Burlando, P.: Snow Depth Structure,
Fractal Behavior, and Interannual Consistency Over Haut Glacier d'Arolla,
Switzerland, Water Resour. Res., 54, 7929–7945,
https://doi.org/10.1029/2017WR021606, 2018.
Deems, J. S.: Topographic effects on the spatial and temporal patterns of
snow temperature gradients in a mountain snowpack, Montana State University,
Bozeman, MT, 97 pp., 2002.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal Distribution of
Snow Depth from Lidar Data, J. Hydrometeorol., 7, 285–297, https://doi.org/10.1175/JHM487.1, 2006.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow
depth: a review, J. Glaciol., 59, 467–479,
https://doi.org/10.3189/2013JoG12J154, 2013.
De Michele, C., Avanzi, F., Passoni, D., Barzaghi, R., Pinto, L., Dosso, P., Ghezzi, A., Gianatti, R., and Della Vedova, G.: Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation, The Cryosphere, 10, 511–522, https://doi.org/10.5194/tc-10-511-2016, 2016.
Deschamps-Berger, C., Gascoin, S., Berthier, E., Deems, J., Gutmann, E., Dehecq, A., Shean, D., and Dumont, M.: Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data, The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, 2020.
Dozier, J.: Mountain hydrology, snow color, and the fourth paradigm, Eos
Trans. AGU, 92, 373–374, https://doi.org/10.1029/2011EO430001, 2011.
Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalent in the world's mountains, WIREs Water,
3, 461–474, https://doi.org/10.1002/wat2.1140, 2016.
Eberhard, L. A., Sirguey, P., Miller, A., Marty, M., Schindler, K., Stoffel, A., and Bühler, Y.: Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping, The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, 2021.
Egli, L., Griessinger, N., and Jonas, T.: Seasonal development of spatial
snow-depth variability across different scales in the Swiss Alps, Ann.
Glaciol., 52, 216–222, https://doi.org/10.3189/172756411797252211, 2011.
Eker, R., Bühler, Y., Schlögl, S., Stoffel, A., and Aydın, A.:
Monitoring of Snow Cover Ablation Using Very High Spatial Resolution Remote
Sensing Datasets, Remote Sens.-Basel, 11, 699,
https://doi.org/10.3390/rs11060699, 2019.
Elder, K., Dozier, J., and Michaelsen, J.: Snow accumulation and
distribution in an Alpine Watershed, Water Resour. Res., 27, 1541–1552,
https://doi.org/10.1029/91WR00506, 1991.
Elder, K., Rosenthal, W., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalence in a montane watershed, Hydrol.
Process., 12, 1793–1808, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K, 1998.
Falgout, J. T. and Gordon, J.: USGS Advanced Research Computing, USGS Yeti
Supercomputer, U.S. Geological Survey,
https://www.usgs.gov/advanced-research-computing/usgs-yeti-supercomputer (last access: 30 October 2022),
2022.
Fassnacht, S. R. and Deems, J. S.: Measurement sampling and scaling for deep
montane snow depth data, Hydrol. Process., 20, 829–838,
https://doi.org/10.1002/hyp.6119, 2006.
Fey, C., Schattan, P., Helfricht, K., and Schöber, J.: A compilation of
multitemporal TLS snow depth distribution maps at the Weisssee snow research
site (Kaunertal, Austria), Water Resour. Res., 5, 5154–5164,
https://doi.org/10.1029/2019WR024788, 2019.
Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung,
D., Nishimura, K., Satyawali, P., and Sokratov, S.: The International
Classification for Seasonal Snow on the Ground, Tech. rep., IHP-VII,
Technical Documents in Hydrology No. 83, IACS Contribution No. 1, UNESCO –
IHP, Paris, 2009.
Gabrlik, P., la Cour-Harbo, A., Kalvodova, P., Zalud, L., and Janata, P.:
Calibration and accuracy assessment in a direct georeferencing system for
UAS photogrammetry, Int. J. Remote Sens., 39, 4931–4959,
https://doi.org/10.1080/01431161.2018.1434331, 2018.
Gabrlik, P., Janata, P., Zalud, L., and Harcarik, J.: Towards Automatic
UAS-Based Snow-Field Monitoring for Microclimate Research, Sensors, 19,
1945, https://doi.org/10.3390/s19081945, 2019.
Gaffey, C. and Bhardwaj, A.: Applications of Unmanned Aerial Vehicles in
Cryosphere: Latest Advances and Prospects, Remote Sens.-Basel, 12, 948,
https://doi.org/10.3390/rs12060948, 2020.
Goetz, J. and Brenning, A.: Quantifying Uncertainties in Snow Depth Mapping
From Structure From Motion Photogrammetry in an Alpine Area, Water Resour.
Res., 55, 7772–7783, https://doi.org/10.1029/2019WR025251, 2019.
Greene, E., Birkeland, K. W., Kelly, E., McCammon, I., Staples, M., and
Sharaf, D.: Snow, Weather, and Avalanches: Observation Guidelines for
Avalanche Programs in the United States, 3rd edn., edited by: Krause, D.,
American Avalanche Association, Victor, ID, 152 pp., 2016.
Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment, The Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010, 2010.
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle, The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, 2016.
Höhle, J. and Höhle, M.: Accuracy assessment of digital elevation
models by means of robust statistical methods, ISPRS J. Photogramm., 64,
398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009.
Hu, F., Gao, X. M., Li, G. Y., and Li, M.: DEM extraction from Worldview-3
stereo-images and accuracy evaluation, Int. Arch. Photogramm. Remote Sens.
Spatial Inf. Sci., XLI-B1, 327–332,
https://doi.org/10.5194/isprsarchives-XLI-B1-327-2016, 2016.
Kinar, N. J. and Pomeroy, J. W.: Measurement of the physical properties of
the snowpack, Rev. Geophys., 53, 481–544,
https://doi.org/10.1002/2015RG000481, 2015.
Kronholm, K.: Spatial variability of snow mechanical properties with regard
to avalanche formation, PhD Dissertation, Faculty of Mathematics and
Science, Department of Geography, University of Zurich, Zurich, 187 pp.,
2004.
Kronholm, K. and Birkeland, K. W.: Reliability of sampling designs for
spatial snow surveys, Comput. Geosci., 33, 1097–1110,
https://doi.org/10.1016/j.cageo.2006.10.004, 2007.
Kronholm, K., Schneebeli, M., and Schweizer, J.: Spatial variability of
micropenetration resistance in snow layers on a small slope, Ann. Glaciol.,
38, 202–208, https://doi.org/10.3189/172756404781815257, 2004.
Lacroix, P.: Landslides triggered by the Gorkha earthquake in the Langtang
valley, volumes and initiation processes, Earth Planets Space, 68, 46,
https://doi.org/10.1186/s40623-016-0423-3, 2016.
Landry, C., Birkeland, K., Hansen, K., Borkowski, J., Brown, R., and
Aspinall, R.: Variations in snow strength and stability on uniform slopes,
Cold Reg. Sci. Technol., 39, 205–218,
https://doi.org/10.1016/j.coldregions.2003.12.003, 2004.
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S.,
and Tabler, R. D.: Simulating complex snow distributions in windy
environments using SnowTran-3D, J. Glaciol., 53, 241–256,
https://doi.org/10.3189/172756507782202865, 2007.
López-Moreno, J. I., Fassnacht, S. R., Beguería, S., and Latron, J. B. P.: Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies, The Cryosphere, 5, 617–629, https://doi.org/10.5194/tc-5-617-2011, 2011.
López-Moreno, J. I., Revuelto, J., Fassnacht, S. R., Azorín-Molina,
C., Vicente-Serrano, S. M., Morán-Tejeda, E., and Sexstone, G. A.:
Snowpack variability across various spatio-temporal resolutions, Hydrol.
Process., 29, 1213–1224, https://doi.org/10.1002/hyp.10245, 2015.
Lundy, C. C., Brown, R. L., Adams, E. E., Birkeland, K. W., and Lehning, M.:
A statistical validation of the snowpack model in a Montana climate, Cold
Reg. Sci. Technol., 33, 237–246,
https://doi.org/10.1016/S0165-232X(01)00038-6, 2001.
Lutz, E. R. and Birkeland, K. W.: Spatial patterns of surface hoar
properties and incoming radiation on an inclined forest opening, J.
Glaciol., 57, 355–366, https://doi.org/10.3189/002214311796405843, 2011.
Marti, R., Gascoin, S., Berthier, E., de Pinel, M., Houet, T., and Laffly, D.: Mapping snow depth in open alpine terrain from stereo satellite imagery, The Cryosphere, 10, 1361–1380, https://doi.org/10.5194/tc-10-1361-2016, 2016.
McCormack, E. and Vaa, T.: Testing Unmanned Aircraft for Roadside Snow
Avalanche Monitoring, Transp. Res. Record, 2673, 94–103,
https://doi.org/10.1177/0361198119827935, 2019.
Melvold, K. and Skaugen, T.: Multiscale spatial variability of lidar-derived
and modeled snow depth on Hardangervidda, Norway, Ann. Glaciol., 54,
273–281, https://doi.org/10.3189/2013AoG62A161, 2013.
Mendoza, P. A., Musselman, K. N., Revuelto, J., Deems, J. S.,
López-Moreno, J. I., and McPhee, J.: Interannual and Seasonal
Variability of Snow Depth Scaling Behavior in a Subalpine Catchment, Water
Resour. Res., 56, WR027343, https://doi.org/10.1029/2020WR027343, 2020.
Meyer, J. and Skiles, S. M.: Assessing the Ability of Structure From Motion
to Map High-Resolution Snow Surface Elevations in Complex Terrain: A Case
Study From Senator Beck Basin, CO, Water Resour. Res., 55, 6596–6605,
https://doi.org/10.1029/2018WR024518, 2019.
Miller, Z. S., Peitzsch, E. H., Sproles, E. A., Palomaki, R. T., and Birkeland, K. W.: 2020 winter timeseries of UAS derived digital surface models (DSMs) from the Hourglass study site, Bridger Mountains, Montana, USA, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P9YCIA1R, 2022.
Mock, C. J. and Birkeland, K. W.: Snow Avalanche Climatology of the Western
United States Mountain Ranges, B. Am. Meteorol. Soc., 81, 2367–2392,
https://doi.org/10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2, 2000.
Molotch, N. P. and Bales, R. C.: SNOTEL representativeness in the Rio Grande
headwaters on the basis of physiographics and remotely sensed snow cover
persistence, Hydrol. Process., 20, 723–739,
https://doi.org/10.1002/hyp.6128, 2006.
Mott, R. and Lehning, M.: Meteorological Modeling of Very High-Resolution
Wind Fields and Snow Deposition for Mountains, Front. Earth Sci., 11,
934–949, https://doi.org/10.1175/2010JHM1216.1, 2010.
Mott, R., Schirmer, M., and Lehning, M.: Scaling properties of wind and snow
depth distribution in an Alpine catchment, J. Geophys. Res., 116, D06106,
https://doi.org/10.1029/2010JD014886, 2011.
Mott, R., Vionnet, V., and Grünewald, T.: The Seasonal Snow Cover
Dynamics: Review on Wind-Driven Coupling Processes, Front. Earth Sci., 6,
197, https://doi.org/10.3389/feart.2018.00197, 2018.
Niedzielski, T., Szymanowski, M., Miziński, B., Spallek, W.,
Witek-Kasprzak, M., Ślopek, J., Kasprzak, M., Błaś, M., Sobik, M.,
Jancewicz, K., Borowicz, D., Remisz, J., Modzel, P., Męcina, K., and
Leszczyński, L.: Estimating snow water equivalent using unmanned aerial
vehicles for determining snow-melt runoff, J. Hydrol., 578,
124046, https://doi.org/10.1016/j.jhydrol.2019.124046, 2019.
Nolan, M., Larsen, C., and Sturm, M.: Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry, The Cryosphere, 9, 1445–1463, https://doi.org/10.5194/tc-9-1445-2015, 2015.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J.
S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann,
C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C.,
and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar,
imaging spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152,
https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Pebesma, E. J.: Multivariable geostatistics in S: the gstat package,
Comput. Geosci., 30, 683–691,
https://doi.org/10.1016/j.cageo.2004.03.012, 2004.
Peitzsch, E., Fagre, D., Hendrikx, J., and Birkeland, K.: Detecting snow
depth changes in avalanche path starting zones using uninhabited aerial
systems and structure from motion photogrammetry, Proceedings of the
International Snow Science Workshop 2018, Innsbruck,
https://pubs.er.usgs.gov/publication/70200492 (last access: 29 September 2019), 2018.
Prokop, A., Schön, P., Singer, F., Pulfer, G., Naaim, M., Thibert, E.,
and Soruco, A.: Merging terrestrial laser scanning technology with
photogrammetric and total station data for the determination of avalanche
modeling parameters, Cold Reg. Sci. Technol., 110, 223–230,
https://doi.org/10.1016/j.coldregions.2014.11.009, 2015
QGIS.org: QGIS Geographic Information System, QGIS Association,
https://QGIS.org (last access: 9 November 2022), 2021.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2021.
Redpath, T. A. N., Sirguey, P., and Cullen, N. J.: Repeat mapping of snow depth across an alpine catchment with RPAS photogrammetry, The Cryosphere, 12, 3477–3497, https://doi.org/10.5194/tc-12-3477-2018, 2018.
Revuelto, J., Alonso-Gonzalez, E., Vidaller-Gayan, I., Lacroix, E.,
Izagirre, E., Rodríguez-López, G., and López-Moreno, J. I.:
Intercomparison of UAV platforms for mapping snow depth distribution in
complex alpine terrain, Cold Reg. Sci. Technol., 103344,
https://doi.org/10.1016/j.coldregions.2021.103344, 2021.
Roy, D. P. and Dikshit, O.: Investigation of Image Resampling Effects upon
The Textural Information Content of a High Spatial Resolution Remotely
Sensed Image, Int. J. Remote S., 15, 1123–1130,
https://doi.org/10.1080/01431169408954146, 1994.
Schirmer, M. and Lehning, M.: Persistence in intra-annual snow depth
distribution: 2. Fractal analysis of snow depth development, Water Resour.
Res., 47, W09517, https://doi.org/10.1029/2010WR009429, 2011.
Schön, P., Prokop, A., Vionnet, V., Guyomarc'h, G., Naaim-Bouvet, F.,
and Heiser, M.: Improving a terrain-based parameter for the assessment of
snow depths with TLS data in the Col du Lac Blanc area, Cold Reg. Sci. Technol., 114, 15–26,
https://doi.org/10.1016/j.coldregions.2015.02.005, 2015.
Schweizer, J., Kronholm, K., Jamieson, J. B., and Birkeland, K. W.: Review
of spatial variability of snowpack properties and its importance for
avalanche formation, Cold Reg. Sci. Technol., 51, 253–272,
https://doi.org/10.1016/j.coldregions.2007.04.009, 2008.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R.,
Porter, C., and Morin, P.: An automated, open-source pipeline for mass
production of digital elevation models (DEMs) from very-high-resolution
commercial stereo satellite imagery, ISPRS J. Photogram.
Remote S., 116, 101–117,
https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Takasu: RTKLIB: Open Source Program Package for RTK-GPS, FOSS4G, Tokyo,
2009.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic,
meteorologic, and canopy controls on the scaling characteristics of the
spatial distribution of snow depth fields, Water Resour. Res., 43, W07409,
https://doi.org/10.1029/2006WR005317, 2007.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Scaling properties and
spatial organization of snow depth fields in sub-alpine forest and alpine
tundra, Hydrol. Process., 23, 1575–1590, https://doi.org/10.1002/hyp.7270,
2009.
U.S. Geological Survey: USGS 13 arc-second n46w111 1×1 degree, U.S.
Geological Survey, https://nationalmap.gov/elevation.html (last access: 24 October 2020), 2017.
Vander Jagt, B., Lucieer, A., Wallace, L., Turner, D., and Durand, M.: Snow
Depth Retrieval with UAS Using Photogrammetric Techniques, Geosciences J.,
5, 264–285, https://doi.org/10.3390/geosciences5030264, 2015.
Van Peursem,
K., Hendrikx, J., Birkeland, K., Miller, D., and Gibson, C.: Validation of a
coupled weather and SNOWPACK model across western Montana, Proceedings of
the International Snow Science Workshop 2016, Breckenridge,
https://arc.lib.montana.edu/snow-science/item.php?id=2444 (last access: 28 August 2020), 2016.
Vosselman, G.: Slope based filtering of laser altimetry data, IAPRS, XXXIII,
9, 2000.
Webster, R. and Oliver, M. A.: Modelling the Variogram, in: Geostatistics
for Environmental Scientists, John Wiley & Sons, Ltd, 77–107,
https://doi.org/10.1002/9780470517277.ch5, 2007.
Wirz, V., Schirmer, M., Gruber, S., and Lehning, M.: Spatio-temporal measurements and analysis of snow depth in a rock face, The Cryosphere, 5, 893–905, https://doi.org/10.5194/tc-5-893-2011, 2011.
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic...