Articles | Volume 16, issue 12
https://doi.org/10.5194/tc-16-4907-2022
https://doi.org/10.5194/tc-16-4907-2022
Research article
 | 
08 Dec 2022
Research article |  | 08 Dec 2022

Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain

Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki

Related authors

Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States
Andrew R. Schauer, Jordy Hendrikx, Karl W. Birkeland, and Cary J. Mock
Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021,https://doi.org/10.5194/nhess-21-757-2021, 2021
Short summary
A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings
Erich Peitzsch, Jordy Hendrikx, Daniel Stahle, Gregory Pederson, Karl Birkeland, and Daniel Fagre
Nat. Hazards Earth Syst. Sci., 21, 533–557, https://doi.org/10.5194/nhess-21-533-2021,https://doi.org/10.5194/nhess-21-533-2021, 2021
Short summary
Local topography increasingly influences the mass balance of a retreating cirque glacier
Caitlyn Florentine, Joel Harper, Daniel Fagre, Johnnie Moore, and Erich Peitzsch
The Cryosphere, 12, 2109–2122, https://doi.org/10.5194/tc-12-2109-2018,https://doi.org/10.5194/tc-12-2109-2018, 2018
Future snow? A spatial-probabilistic assessment of the extraordinarily low snowpacks of 2014 and 2015 in the Oregon Cascades
Eric A. Sproles, Travis R. Roth, and Anne W. Nolin
The Cryosphere, 11, 331–341, https://doi.org/10.5194/tc-11-331-2017,https://doi.org/10.5194/tc-11-331-2017, 2017
Short summary
Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015
Adam M. Clark, Daniel B. Fagre, Erich H. Peitzsch, Blase A. Reardon, and Joel T. Harper
Earth Syst. Sci. Data, 9, 47–61, https://doi.org/10.5194/essd-9-47-2017,https://doi.org/10.5194/essd-9-47-2017, 2017
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023,https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023,https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023,https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023,https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Impact of measured and simulated tundra snowpack properties on heat transfer
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022,https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary

Cited articles

Adams, M., Bühler, Y., and Fromm, R.: Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain, Pure Appl. Geophys., 175, 3303–3324, https://doi.org/10.1007/s00024-017-1748-y, 2018. 
Agisoft: Agisoft Metashape Professional (Version 1.6.6), Agisoft, 2020. 
Alidoost, F. and Arefi, H.: Comparison of UAS-based photogrammetry software for 3D point cloud generation: a survey over a historical site, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4/W4, 55–61, https://doi.org/10.5194/isprs-annals-IV-4-W4-55-2017, 2017. 
Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004. 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric Accuracy in Snow Depth Using Unmanned Aerial System Photogrammetry and a MultiStation, Remote Sens.-Basel, 10, 765, https://doi.org/10.3390/rs10050765, 2018. 
Download
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.