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Abstract. Dynamic natural processes govern snow distribu-
tion in mountainous environments throughout the world. In-
teractions between these different processes create spatially
variable patterns of snow depth across a landscape. Varia-
tions in accumulation and redistribution occur at a variety
of spatial scales, which are well established for moderate
mountain terrain. However, spatial patterns of snow depth
variability in steep, complex mountain terrain have not been
fully explored due to insufficient spatial resolutions of snow
depth measurement. Recent advances in uncrewed aerial sys-
tems (UASs) and structure from motion (SfM) photogram-
metry provide an opportunity to map spatially continuous
snow depths at high resolutions in these environments. Us-
ing UASs and SfM photogrammetry, we produced 11 snow
depth maps at a steep couloir site in the Bridger Range of
Montana, USA, during the 2019–2020 winter. We quantified
the spatial scales of snow depth variability in this complex
mountain terrain at a variety of resolutions over 2 orders of
magnitude (0.02 to 20 m) and time steps (4 to 58 d) using
variogram analysis in a high-performance computing envi-
ronment. We found that spatial resolutions greater than 0.5 m
do not capture the complete patterns of snow depth spatial
variability within complex mountain terrain and that snow
depths are autocorrelated within horizontal distances of 15 m
at our study site. The results of this research have the po-
tential to reduce uncertainty currently associated with snow-
pack and snow water resource analysis by documenting and
quantifying snow depth variability and snowpack evolution
on relatively inaccessible slopes in complex terrain at high
spatial and temporal resolutions.

1 Introduction

Seasonal mountain snowfall is a critical natural resource
globally but can also present a natural hazard for moun-
tainous communities. Understanding the spatial distribution
and temporal evolution of seasonal snow depth, defined as
the vertical distance from the snow surface to the base of
the snowpack (Fierz et al., 2009), is essential for water re-
source managers, local governments, climate researchers,
and avalanche forecasters. However, quantifying snow depth
across a landscape, especially one comprised of mountain-
ous terrain, is challenging due to the multi-scalar nature of
physical processes governing the distribution of snow depth
(Blöschl, 1999; Bühler et al., 2016; Egli et al., 2011; El-
der et al., 1998; Grünewald et al., 2010; Liston et al., 2007;
Schweizer et al., 2008; Trujillo et al., 2009). These physi-
cal processes interact in different ways throughout the land-
scape, influencing the local spatial variability of snow depth
in non-homogenous ways over spatial scales ranging from
less than a centimeter to 100 m or greater. The international
snow depth monitoring community follows guidelines for se-
lecting research sites in wind-sheltered, flat locations (Buch-
mann et al., 2021). Although such relatively homogenous ter-
rain allows for clearer differentiation of some specific pro-
cesses influencing snow depth distribution, such as wind–
vegetation interactions (Deems et al., 2006; Trujillo et al.,
2007, 2009), previous research overlooks steep, complex
slopes, an essential characteristic of mountainous terrain,
where much of the seasonal snowpack exists (Deschamps-
Berger et al., 2020). In this study, we define the slope scale as
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a spatial extent of < 0.2 km2 and complex terrain as moun-
tainous topographies including hillslopes > 25◦ with inter-
spersed rock outcrops, vertical cliff features, and variable
slope geometries.

A major challenge in accurately analyzing the spatial
variability of snow depth is acquiring measurements at an
appropriate spatial resolution (Clark et al., 2011; Kinar
and Pomeroy, 2015). Current methods for mapping snow
depth in a spatially continuous manner within steeper moun-
tain topographies are limited (López-Moreno et al., 2015;
Meyer and Skiles, 2019). Traditional methods of measur-
ing snow depth include in situ snow surveys, snow pits,
and automated weather stations (AWSs), which provide a
spatially incomplete measure of snow depth made up of
sparse point measurements distributed heterogeneously over
the landscape (Dozier, 2011; Dozier et al., 2016; Elder et
al., 1998; Grünewald et al., 2010; López-Moreno et al.,
2011). Point measurement locations typically avoid expo-
sure to snow avalanches due to safety and logistical con-
cerns, and therefore measurements collected from relatively
flat, planar terrain are overrepresented compared to mea-
surements from steeper slopes. Remotely sensed measure-
ments, on the other hand, can acquire spatially continuous
snow depth measurements across a variety of terrain at mul-
tiple resolutions without exposing observers to avalanches.
Current satellite-derived snow depth data (e.g., Pléiades,
WorldView-3, and WorldView-4) are easily accessed, spa-
tially continuous, and, through stereo imagery processing,
map snow depth at 2 m horizontal resolution with 0.5 m ver-
tical accuracy (Deschamps-Berger et al., 2020; Hu et al.,
2016; Marti et al., 2016). Yet the accuracy of DEMs pro-
duced through satellite imagery and stereoscopic process-
ing is known to suffer on slopes steeper than 35◦, common
in high-relief mountain terrain (Lacroix, 2016; Shean et al.,
2016; Deschamps-Berger et al., 2020). Therefore satellite-
imagery-derived DEMs are still insufficient for capturing
some of the finer-scale processes which influence snow depth
distributions in complex terrain (Eker et al., 2019). Terrestrial
laser scanning can acquire spatially continuous centimeter-
scale-resolution snow depth data, but it is limited by its in-
herent field of view, shadowing by steep topographic fea-
tures (Deems et al., 2013; Fey et al., 2019; Prokop et al.,
2015; Trujillo et al., 2007), and can be overly cumbersome
for surveys in remote areas. Airborne laser scanning (e.g.,
Airborne Snow Observatory – Painter et al., 2016) circum-
vents the terrain-shadowing shortcomings of terrestrial laser
scanning yet remains cost-prohibitive for many researchers
(Brandt et al., 2020; Bühler et al., 2015; Dozier et al., 2016;
Meyer and Skiles, 2019).

Imagery captured from uncrewed aerial systems (UASs)
combined with structure from motion (SfM) photogramme-
try techniques allows for the low-cost collection of spatially
continuous centimeter-scale-resolution snow depth data with
few terrain limitations, making it an attractive tool for snow
depth distribution mapping in complex, non-forested moun-

tain terrain (Avanzi et al., 2018; Bühler et al., 2016; De
Michele et al., 2016; Eberhard et al., 2021; Gaffey and
Bhardwaj, 2020; Redpath et al., 2018; Revuelto et al., 2021).
Numerous studies conclude that UAS and SfM techniques
are effective at mapping snow depth variability at the slope
scale, yet most focus on simpler terrain and only com-
pare two individual timestamps of data (Adams et al., 2018;
Avanzi et al., 2018; Boesch et al., 2016; Bühler et al., 2016;
Cimoli et al., 2017; De Michele et al., 2016; Eberhard et al.,
2021; Gabrlik et al., 2019; Harder et al., 2016; McCormack
and Vaa, 2019; Redpath et al., 2018; Peitzsch et al., 2018;
Vander Jagt et al., 2015).

Seasonal snowpack is constantly evolving, and the pro-
cess scales at which it changes are variable throughout both
space and time (Blöschl, 1999). The spatial and/or tempo-
ral resolutions of measurements in previous snow depth re-
search have been insufficient to capture the process scales
of spatial heterogeneity in the evolving snowpack (Clark
et al., 2011; López-Moreno et al., 2011). Here, we utilize
0.02 m horizontal-resolution UAS-/SfM-derived snow depth
observations as our baseline for further snow depth spatial-
variability analysis. The observation scales in this study span
multiple orders of magnitude spatially (0.02 m grid cover-
ing approximately 0.2 km2 extent) on 11 distinct observa-
tion days over 5 months. These scales allow us to observe
centimeter-scale vertical changes in snow depth across the
slope scale, here defined as < 0.2 km2. Prior studies demon-
strate the value of the slope scale for exploring the com-
plex nature of snow depth variability and understanding
avalanche formation processes (Anderton et al., 2004; Birke-
land, 2001; Birkeland et al., 1995; Kronholm and Birkeland,
2007; López-Moreno et al., 2015; Schweizer et al., 2008;
Wirz et al., 2011). The temporal resolution of this study al-
lows us to observe the evolution of snow depth spatial vari-
ability throughout the winter, in comparison to previous re-
search that inferred patterns of snow depth spatial variability
from more sparse temporal observations (López-Moreno et
al., 2015; Niedzielski et al., 2019; Mendoza et al., 2020).

Our study considers the question: what is the optimal sam-
ple spacing that fully captures snow depth variability at the
slope scale in complex mountain terrain? The objective of
this work is to quantify the optimal spatial resolution neces-
sary for accurate representation of snow depth spatial vari-
ability and its seasonal evolution in the complex terrain of
our study site. To achieve this, we analyze the differences
in patterns of snow depth between complex and relatively
simple mountain terrain at the slope scale. We also investi-
gate the temporal evolution of snow depth spatial variability
throughout the course of a winter at our study site.

2 Research site

The research site is a steep sub-alpine mountain basin within
the Bridger Range of southwest Montana, USA (45.834◦ N,
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−110.935◦ E), at the head of the South Fork Brackett Creek
watershed (Fig. 1). The Bridger Range is classified as an
intermountain snow and avalanche climate characterized by
average December through March temperatures from −3.5
to −7 ◦C and average annual snowfall of approximately
7.5 m measured at Bridger Bowl Ski Area (Mock and Birke-
land, 2000). The surrounding area, sometimes referred to as
“wolverine basin”, has been the site of frequent snow and
avalanche research over the past 20 years (Deems, 2002;
Landry et al., 2004; Lundy et al., 2001; Van Peursem et
al., 2016) due to its safe access, heterogeneous terrain, and
proximity to Bridger Bowl Ski Area’s network of automated
weather stations (AWSs).

There are two distinct mountain topographies, a steep
couloir and sheltered meadow, within the research site that
are subject to similar meteorological conditions. The Hour-
glass (2250–2550 m a.s.l.) is a couloir and avalanche path
that has a mean slope angle of 33◦ and is mainly com-
posed of rock scree, outcrops of limestone cliffs, and 1–2 m
sub-alpine fir and Engelmann spruce trees. Mature, 10–20 m
in height, coniferous trees and 1 m tall shrubs/bushes bor-
der the main avalanche path. Ridgetop wind loading from
dominant westerly storms result in large cornice growth dur-
ing the winter along the top of the couloir and frequent
small natural avalanches within the avalanche path (Lundy
et al., 2001). The Hourglass is infrequently skied due to its
avalanche-prone terrain, and we observed approximately five
unique ski tracks throughout our field season. The meadow
(2240 m a.s.l.) is adjacent to the runout of the Hourglass, has
a mean slope of 5◦, and consists of a mix of grasses and
shrubs with 10–20 m tall mature coniferous forests on its
north, west, and south sides. The meadow is sheltered from
all but easterly wind directions and localized severe weather
by the surrounding dense forest and steep 300 m headwall to
its west.

We used meteorological data from an AWS in the immedi-
ate vicinity of the research site for measuring snow depth and
other related meteorological variables. The Brackett meadow
AWS (2240 m), located in the meadow, measured hourly
temperature, relative humidity, wind speed, wind direction,
net radiation, and snow depth from 6 November 2019 to
10 June 2020. The Brackett meadow AWS’s below-treeline,
wind-protected location is similar to many USDA SNOTEL
(Snowpack Telemetry) sites (Molotch and Bales, 2006).

3 Methods

Our study aims to quantify optimal sample spacing to fully
capture the spatial variability of snow accumulation and re-
distribution at the slope scale in complex mountain terrain.
To achieve this goal, we first generated digital surface models
(DSMs) with UAS-based SfM photogrammetry techniques
collected on 11 field days during the 2019–2020 winter. We
collected in situ snow depth measurements via manual probe

for validation. Then, we used the high-resolution (0.02 m
horizontal) DSMs and resampled them at coarser resolutions
to calculate multi-resolution variograms to assess the scales
of spatial-variability patterns in snow depth. Finally, we used
scene-wide coefficient of variation calculations to analyze
seasonal patterns in snow depth spatial variability.

3.1 UAS surveys

We designed our aerial surveys to achieve horizontal spatial
resolutions of < 0.05 m to observe centimeter-scale differ-
ences in snow depths throughout the entire study site (De
Michele et al., 2016; Fierz et al., 2009). We used a com-
mercially available DJI Phantom 4 UAS equipped with a 20-
megapixel camera and a real-time kinematic (RTK) global
navigation satellite system (GNSS) with the DJI DRTK2
GNSS mobile station. We conducted repeated autonomous
pre-programmed UAS missions flying in a grid pattern at
a constant 50 m above ground level based on a 1 m resolu-
tion DSM collected prior to winter flights. Our flight imagery
was collected with 70 % front/side image overlap, resulting
in < 2 cm per pixel average ground sampling distance and
approximately 550 overlapping images each field day, simi-
lar to Goetz and Brenning (2019). A data gap exists between
17 March 2020 and 14 May 2020, due to the onset of the
COVID-19 pandemic.

To constrain topographic error in postprocessing, we col-
lected 25 stationary and easily recognizable ground control
points with high-resolution RTK GNSS survey equipment
during the snow-free season to incorporate into the digital
surface models. Due to variable snow cover, we used a par-
tial selection of the 25 ground control points, typically 3–10
points, in each individual model by selecting points that were
not covered by snow. To constrain snow depth observation
error, each field day we deployed and surveyed at least four
snow depth validation point targets prior to flights in safe,
accessible locations within the study area and manually mea-
sured snow depths at each point immediately after the flights
(described further in Sect. 3.3).

3.2 Digital surface model (DSM) creation

For each field date, we processed the overlapping imagery
to derive snow depth maps using three steps: postprocess-
ing kinematic (PPK) location corrections, SfM processing of
imagery for DSM creation, and DSM differencing to derive
snow depth.

We postprocessed the UAS location data to improve the
quality of the RTK GNSS positions and ensure accurate
coregistration of output models using RTKLIB (Takasu,
2009) and the R software environment (R Core Team, 2021)
in the WGS84 geographic coordinate system (EPSG:4326).
Using the National Geodetic Survey CORS MTSU reference
station (∼ 21 km from the study site), the National Aeronau-
tics and Space Administration’s daily global positioning sys-
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Figure 1. Study location in the Bridger Range of Montana, USA (a), and overview topographic map of the study area (b). The general research
site (dotted polygon), the Hourglass couloir (solid red), the meadow (dashed purple), and the Brackett meadow AWS (white triangle) are
shown. Photographs of the Hourglass couloir (c) and meadow (d) with the couloir and meadow polygons outlined. Data map source: U.S.
Geological Survey (2017).

tems broadcast ephemeris data, and the UAS RINEX and
timestamp files, our PPK processing resulted in horizontal
positional accuracies of less than 0.1 m and vertical posi-
tional accuracies of less than 0.2 m for most UAS photo lo-
cations (Table A1). This additional step was necessary due
to limited satellite connectivity of the RTK system from the
poor sky view of high-relief topography at our study site.

We completed SfM photogrammetric processing using the
software package Agisoft Metashape Pro Version 1.6.6 (Ag-
isoft, 2020), which generates 3-D surface models from over-
lapping imagery and point matching (Alidoost and Arefi,
2017; Carbonneau and Dietrich, 2017; Gabrlik et al., 2018;
Nolan et al., 2015). We filtered, aligned, and reduced the er-
ror of the geolocated imagery before the addition of ground
control points for final batch processing. Finally, we ensured
accurate coregistration by aligning the vertical and horizontal
positions of the snow-covered models to available snow-free
ground control points and the snow-free 8 July 2020 model
(Adams et al., 2018). Utilizing fewer ground control points

and UASs equipped with RTK provides similar accuracies
as traditional ground-control point-driven SfM workflows
(Eberhard et al., 2021; Revuelto et al., 2021). This processing
workflow produced a DSM interpolated from a dense point
cloud and an orthomosaic for further analysis. We used sim-
ple DSM-differencing techniques to calculate snow depths
throughout our site by subtracting a snow-free DSM col-
lected on 8 July 2020 from each snow-covered DSM, result-
ing in snow depth DSMs used for further spatial-variability
analysis. We removed poor-quality DSMs if deemed unac-
ceptable through comparison with probed snow depths, vi-
sual inspection, and expert judgment (Table A2). Examples
of these thresholds include observed limited point matching
while processing, inaccurate DSM reconstruction surfaces,
unrealistic snow depths, and unrealistic snow depth distribu-
tions. Unrealistic snow depths are negative snow depth val-
ues and values filtered by expert judgment.
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3.3 Manual snow depth collection

We collected traditional manual snow depth measurements
through in situ probing primarily within the lower elevations
of the research area. These geolocated validation point snow
depths were used for error assessment of UAS-derived snow
depths. We collected manual snow depth measurements at
four or more random locations within avalanche-safe areas of
the study site at deployed 1 m2 markers on each field day. To
determine the 1 m2 average, variation, and range at validation
points, we probed manual in situ snow depths at the center
and four corners of each deployed marker (López-Moreno
et al., 2011). We used the 1 m2 averages as our individual
validation point measurements. We collected location infor-
mation for each of these manual snow depth measurements
with handheld GPS units (3–5 m accuracy). Additionally, we
manually collected a single in situ avalanche crown profile
in the upper elevations of the couloir on 28 February 2020,
which included total snow depth, 25 individual snow layer
thicknesses, grain type and size measurements, and an ex-
tended column test (ECT) as per Greene et al. (2016). We
calculated summary statistics for manual snow depth mea-
surements and their UAS-derived equivalent depths for each
field day (Table A3).

We completed an assessment of error by calculating mean,
standard deviation, root mean square error (RMSE) (Eq. 1),
and normalized median absolute deviation (NMAD) (Eq. 2)
values for the differences between UAS-derived and probed
snow depths for both the complete set of snow depth DSMs
and a subset with poor-quality models of the meadow re-
moved. RMSE is defined as

RMSE=

√√√√1
n

n∑
i=1

(Pi −Oi)
2, (1)

where n is the number of observations, P is the predicted
value, andO is the observed value. NMAD is represented by

NMAD= 1.4826×median(|xi − xmedian|) , (2)

where 1.4826 is the scale factor for comparison with standard
deviation, xi is the difference in measured snow depths for
point i, and xmedian is the median of the dataset of differences.

Our error assessment followed a condensed version of
the accuracy and precision measures presented in Adams et
al. (2018) and Eberhard et al. (2021). The mean difference
and RMSE are common measures of accuracy. Standard de-
viation and NMAD are common measures of precision, with
NMAD being more resistant to outliers. We extracted the
1 m2 median and inner quartile range (IQR) values from the
corresponding snow depth DSM for each manually collected
snow depth measurement location and used the median value
for error assessment.

3.4 Digital surface model (DSM) detrending

In preparation for variability analysis, we detrended each
snow depth DSM with regular grids to focus analysis on
the resultant residual surfaces as per Lutz and Birkeland
(2011). Detrending allowed us to calculate omnidirectional
variograms. First, we masked individual vegetation features,
such as trees, out of all DSMs while attempting to retain
some snow surface between features. We used QGIS ver-
sion 3.20.1 (QGIS.org, 2021) and the SAGA-GIS plugin’s
DTM filter tool (Vosselman, 2000) to filter out localized ver-
tical spikes in elevation in the snow-free 8 July 2020 DSM
and applied a 0.1 m buffer along the masked feature bound-
aries to account for minor vegetation shifts due to wind or
snow creep (Table A3). We checked this mask against high-
resolution orthoimagery produced in the SfM workflow to
ensure accuracy and applied this mask to each DSM included
in our analysis.

We created detrended surfaces for each DSM using eleva-
tion, aspect, and distance from ridge as independent variables
potentially contributing to snow depth trends. We extracted
elevation, aspect, and distance-from-ridge raw surfaces from
the snow-free 8 July 2020 DSM. Then, we calculated trend
surfaces by selecting the most significant (lowest p value)
independent variable resulting from a least squares linear re-
gression for snow depth and each independent variable for
each individual DSM. We subtracted the resultant trend sur-
face from the raw snow depth DSM to produce detrended
residual DSMs for each field day. If no independent vari-
ables proved significant (p > 0.05), we detrended the DSMs
by subtracting the mean snow depth from the raw snow depth
DSM instead. A final correction using a 3 standard deviation
filter and expert judgment removed erroneous outlier data
from the detrended residual snow depth DSMs (Höhle and
Höhle, 2009).

3.5 Variogram calculation and fit

To examine the spatial relationships of snow depth distribu-
tions in our two study sites, we used variogram analysis. Var-
iograms are useful for determining spatial structure and cor-
relation of variables whose scaling behavior is unknown. Var-
iograms are a visual representation of semivariance values
calculated between point pairs at a variety of lag distances.
The experimental variogram can be calculated as

γ̂ (h)=
1

2N (h)

N(h)∑
(i,j)

(
zj − zi

)2
, (3)

where N(h) is the number of point pairs at the given lag dis-
tance h, and zi and zj are detrended snow depth values from
individual points separated by a lag distance h (Webster and
Oliver, 2007). The resultant semivariance values γ̂ can be
plotted against their lag distances, and we can determine the
separation distance h at which point-pair values are still cor-
related. This autocorrelation point is defined as the “sill” in
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terms of semivariance γ̂ and the “range” in terms of lag dis-
tance h. The sill represents the overall variance of the in-
put data. The range represents the maximum distance where
point values are still correlated and is generally calculated as
the lag distance at 95 % of the sill. Point pairs further apart
than the range are considered not correlated and spatially in-
dependent. The nugget represents the potential measurement
error and is the variance resulting from measurement error
and natural variation found over distances shorter than the
minimum sampling resolution. We calculated experimental
omnidirectional variograms of the detrended residual snow
depth DSMs at a variety of spatial resolutions and fit spher-
ical models in the R software environment (R Core Team,
2021). Spherical models are well suited for 3-D spatial analy-
sis, are commonly used in similar variogram analyses, and fit
the majority of our 170 experimental variograms (Kronholm,
2004; Kronholm et al., 2004; Kronholm and Birkeland, 2007;
Webster and Oliver, 2007). Additionally, alternative models,
such as exponential, Gaussian, and log–log linear, were uti-
lized to fit snow depth spatial-variability variograms in pre-
vious studies (Mendoza et al., 2020).

First, we resampled the detrended residual DSMs from
their original 0.02 m spatial resolution to 0.05, 0.1, 0.25,
0.5, 1, 2.5, 5, 10, and 20 m horizontal spatial resolutions
using four resampling methods: nearest neighbor (Schön et
al., 2015), cubic convolution, mean aggregation, and me-
dian aggregation. We used paired-point correlations of the
nearest-neighbor resampled results with aggregated mean,
aggregated median, and cubic-convolution resampling tech-
niques to compare the effects of each resampling method on
variability calculations. We chose the nearest-neighbor re-
sampling technique to avoid oversmoothing observed using
an aggregation or a cubic-convolution resampling technique,
and to avoid the uncertainty associated with the possibility
of out-of-range values calculated through cubic-convolution
techniques (Roy and Dikshit, 1994; Fassnacht and Deems,
2006). We then calculated experimental variograms of both
sites for each resolution for each field day with both nearest-
neighbor and cubic convolution resampled DSMs and fit
spherical models to each of these independent experimen-
tal variograms using the R package “gstat” (Pebesma, 2004).
To estimate the goodness of fit of the spherical models, we
calculated RMSE and NMAD values for the fit of the spher-
ical models to the experimental variograms. The maximum
distance considered for our variogram calculations was set
to one-third of the maximum distance between point pairs
within the two scenes, and we used minimum lag distances
equal to the minimum point pair distances. Previous work
used one-half of the maximum distance between point pairs
as the maximum distance considered for variogram calcula-
tions, which would result in the comparison of point pairs at
greater lag distances (Schirmer and Lehning, 2011; Clemenzi
et al., 2018; Mendoza et al., 2020). Our focus on complex ter-
rain, our relatively small study site extent, and the large num-
ber of points to be compared with our high-resolution DSMs

motivated our decision for a smaller maximum distance con-
sidered for variogram calculations (Blöschl, 1999). Due to
the large number of points contained in the high-resolution
DSMs (0.02, 0.05, and 0.1 m) and the computing power re-
quired for variogram analysis of such large datasets, we used
a random sample of 3 million points to process the experi-
mental variograms for these three resolutions. To ensure re-
producibility, we used a pre-set seed when randomly sam-
pling. We applied a local polynomial regression (LOESS) fit
from the R package “stats” to the fit spherical models to pro-
duce the seasonally averaged resolution-specific variograms
(R Core Team, 2021). We utilized the United States Geolog-
ical Survey (USGS) Yeti supercomputer for all of our vari-
ogram calculations and model fitting (Falgout and Gordon,
2022).

3.6 Coefficient of variation calculation

We calculated the coefficient of variation (CV) (Eq. 3) of the
vegetation-masked and outlier-removed snow depth DSMs in
the R software environment (R Core Team, 2021) defined as

CV=
σ

µ
, (4)

where σ is standard deviation and µ is mean snow depth. We
calculated the CV values for a variety of nearest-neighbor
resampled resolutions to ensure consistent results and to re-
duce the computational load of calculating 0.02 m resolution
snow depth DSMs.

4 Results

4.1 Snow depth DSMs error and detrending results

We compared manual in situ validation-point snow depth
measurements (n= 70) with our DSM-differenced snow
depths to assess error in our UAS-derived snow depths
(Fig. 2). The seasonal mean, standard deviation, RMSE,
and NMAD of differences between probed and UAS-derived
snow depths show the effect of poor model quality on snow
depth measurements (Table 1). The daily mean, standard de-
viation, and RMSE of differences between UAS-derived and
probed snow depths varied considerably throughout the sea-
son (Table A2) and showed an increase in accuracy and a
slight decrease in precision throughout the season (Fig. A1).

We collected all validation snow depth measurements, ex-
cept the crown profile of the 26 February 2020 avalanche,
in the lower elevations of the Hourglass and throughout the
meadow in order to avoid exposure to snow avalanches. We
observed large ranges of measured snow depths within these
vegetated areas. For example, the ranges of probed snow
depths measured within the 1 m2 validation points (n= 70)
were as high as 0.49 m, with an average range of 0.13 m.
This assessment is not a comprehensive assessment of er-
ror, because our validation snow depths were primarily col-
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Table 1. Seasonal statistics of observed snow depth differences between probed and uncrewed aerial system (UAS)-derived validation point
measurements (DSM: digital surface model, RMSE: root mean square error, NMAD: normalized median absolute deviation).

Snow depth Mean difference Standard deviation RMSE of NMAD of
DSMs included (m) of differences (m) differences (m) differences (m)

All 0.44 0.60 0.74 0.21
Poor quality removed 0.27 0.26 0.37 0.16

Figure 2. Measured snow depths (m) from 1 January–5 June 2020,
including additional in situ probed measurement days where un-
crewed aerial system (UAS) models were discarded due to poor sur-
face reconstruction. The Brackett meadow automated weather sta-
tion (AWS, blue) represents the sonic rangefinder-measured snow
depth. Probed (yellow) snow depths are collected manually in situ
as validation points. UAS (red) snow depths are derived from dig-
ital surface model (DSM) differencing at each validation point on
a given observation day. Probed points represent snow depth mea-
surements from within the meadow and low relief and lower eleva-
tion portions of the Hourglass and do not represent the same loca-
tion as the sonic rangefinder attached to the Brackett meadow AWS.

lected at random locations in the safe lower slopes, and this
assessment is therefore biased towards comparisons of mea-
surements in the meadow. Although far from a complete ac-
curacy assessment, our single manual snow depth measure-
ment from upper elevations at the crown of the avalanche
(top of the couloir) exhibited a snow depth difference of only
0.01 m (1.90 m measured vs. 1.89 m UAS-derived), which is
well within the typical error of manual measurement.

The DSM detrending analysis identified elevation as the
most significant independent variable for each day at our
study site. Therefore, we detrended all snow depth DSMs us-
ing the elevation surface derived from the 8 July 2020 snow-
free DSM (Fig. 3). Complete time series plots of vegetation-
masked and detrended snow depth maps of the Hourglass and
meadow are provided in the Appendix (Figs. A7 and A8).

4.2 Resampling results

We resampled and compared the vegetation-masked and de-
trended DSMs from their original 0.02 m spatial resolution to
0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, and 20 m horizontal spatial
resolutions using nearest-neighbor, cubic convolution, aggre-
gated mean, and aggregated median methods. We compared
the resampled snow depth DSMs by calculating correlation
coefficients for all cell values for each pairing of resampling
techniques. All resampling techniques are highly correlated
at DSM resolutions finer than 1 m, with average correlations
of 0.99, 0.98, and 0.97 for 0.25, 0.5, and 1 m resolutions,
respectively (Fig. A2). At each resolution step greater than
1 m, correlations between the nearest-neighbor, cubic convo-
lution, aggregated mean, and aggregated median methods de-
crease differentially between the Hourglass and the meadow
but remain consistent between resampling methods. In the
Hourglass, average correlations decrease to 0.92, 0.87, 0.77,
and 0.73 for 2.5, 5, 10, and 20 m resolutions, respectively.
In the meadow, average correlations decrease to 0.94, 0.92,
0.91, and 0.87 for 2.5, 5, 10, and 20 m resolutions, respec-
tively.

4.3 Variogram results

We calculated experimental variograms (Fig. A3) and com-
pared the results of the spherical-fit variogram models from
the two distinct topographies within our study site and each
field day at a variety of spatial resolutions using two differ-
ent resampling techniques, nearest neighbor and cubic con-
volution. The two resampling techniques produced similar
experimental variograms with only a few instances of lower
residual semivariance observed in the cubic convolution re-
sampled data. Subtle differences in the experimental vari-
ograms between the two resampling techniques influenced
the spherical-fit models (Fig. A4). The cubic-convolution ap-
proach fails to register the initial sill break point (around
15 m) of the experimental variogram and fits a larger range
with an associated larger sill value in several spherical-fit var-
iograms (Fig. A5). The RMSE and NMAD values for the
spherical-fit models were consistently higher for the Hour-
glass than the meadow, with the highest values found at
spatial resolutions finer than 0.5 m and at 20 m (Table A5).
We found consistent differences in the range, nugget, and
sill (semivariance) values of the Hourglass and the meadow
sites. The Hourglass exhibits a smaller range of autocorrela-
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Figure 3. Vegetation masking and detrending processes for raw snow depth values from 21 February 2020 derived from DSM differencing.
The scene-wide raw snow depth (a) map is shown prior to vegetation masking (b) and elevation detrending (c), resulting in the detrended
snow depth map (d) used for snow depth spatial-variability analysis. The inset map (yellow – lower right) of the vegetation mask map (b)
illustrates the masks’ removal of trees and other vegetation. Elevations (c) are from the 8 July 2022 snow-free DSM. Note that detrended snow
depths (d) result in negative values at upper elevations. Map satellite imagery: © Google, © 2022 USDA/FPAC/GEO, Maxar Technologies.

tion, greater sill values, and greater nugget values than the
meadow, when including all dates and snow depth DSM res-
olutions (Table 2). Specifically, the Hourglass exhibited con-
sistently more snow depth spatial variability on individual
field days (Fig. 4) and more seasonal variability in its pat-
terns of spatial variability than the meadow (Fig. 5). These
results reflect the given substratum of the two sites. The
meadow’s more homogenous ground cover and topography
are reflected in less variability overall and spatial autocor-
relation over greater distances. In contrast, the steep, rocky
terrain of the Hourglass is reflected in the more dynamic sea-
sonal patterns of spatial variability and shorter distances of
autocorrelation. The 20 m resolution variograms frequently
misrepresent the spatial-variability patterns of finer resolu-
tions, and this is perhaps due to the relatively small study
sites creating far fewer point pairs of snow depths to calculate
the variograms from, therefore being less resistant to outliers.

Temporally, the greatest semivariance values exist earlier
in the winter at both the Hourglass and meadow at all resolu-
tions. Variability then decreases throughout mid-winter and
increases slightly after the first substantial spring melt event
that occurred approximately 2 weeks prior to 14 May 2020.
Autocorrelation range generally increased within both the
Hourglass and the meadow throughout the winter (Fig. 6),

followed by pronounced increases in the spring. Sill values
were consistently greater at the Hourglass compared to the
meadow throughout the season (Fig. 6) and were relatively
similar across all resolutions except 20 m at the Hourglass
couloir where greater variability exists throughout the sea-
son. Temporally, sill values generally decreased at the Hour-
glass couloir site and remained consistent at the meadow
throughout the winter. Additionally, at the Hourglass, the
sill increased at finer resolutions because of a large natural
avalanche on 26 February 2020.

Snow depth DSM spatial resolution affected the calcu-
lated variograms, resulting in larger autocorrelation range,
sill, and nugget values present in coarser-resolution vari-
ograms (Fig. 7). At the Hourglass, 0.5 m resolution mod-
els accurately represented the spherical-fit variograms of all
finer resolutions (0.02, 0.05, 0.1, and 0.25 m) and consis-
tently resulted in autocorrelation range values of∼ 10 m. The
1 m resolution snow depth DSMs captured the pattern of the
finer-resolution variograms on all but three of the observation
dates (21 February, 14 May, and 25 May) but aligned more
closely with coarser-resolution variograms (2.5, 5, 10, and
20 m) on those three observation dates and exhibited larger,
more variable autocorrelation ranges consistently through-
out the winter. At the meadow, 2.5 m resolution models ac-
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Table 2. Average spherical-fit variogram results for the Hourglass and meadow for all resolutions using the nearest-neighbor resampling
method. Mean values from all analysis dates for each location at each resolution.

Resolution Hourglass Meadow Hourglass Meadow Hourglass Meadow
mean range mean range mean sill mean sill mean nugget mean nugget

0.02 10.08 46.73 0.64 0.17 0.03 0.01
0.05 10.46 46.66 0.64 0.18 0.04 0.01
0.1 11.30 52.71 0.63 0.17 0.06 0.02
0.25 12.38 57.27 0.61 0.17 0.08 0.02
0.5 15.17 62.11 0.60 0.17 0.11 0.03
1 28.92 67.22 0.58 0.17 0.17 0.03
2.5 48.42 74.20 0.62 0.17 0.23 0.04
5 102.15 84.67 0.37 0.17 0.50 0.03
10 130.65 98.92 0.36 0.16 0.53 0.03
20 228.44 40.55 1.17 0.16 0.54 0.07

Figure 4. Spherical-fit variogram models of detrended snow depth residuals from the Hourglass (HG) and meadow (MD) using the nearest-
neighbor resampling method. Each panel depicts a specific observation day and colors represent different snow depth DSM resolutions. Five
observation days were removed from the meadow site time series due to poor model quality. Note different y axis scales for the HG and MD
rows.

curately represented the spherical-fit variograms of all finer
resolutions (0.02, 0.05, 0.1, 0.5, and 1 m) on all observation
dates. The 5 m resolution differed from finer-resolution pat-
terns when seasonally averaged, and the 10 m resolution dif-
fered from the patterns on a single date and more so when
seasonally averaged (Fig. 5). Snow depth DSM resolutions
of 20 m in both topographies and all observation dates failed
to capture the patterns of spatial variability found in finer res-
olutions.

4.4 Coefficient of variation results

We compared the calculated coefficient of variation over time
at the Hourglass and meadow. Resultant coefficients of vari-

ation were similar across a variety of snow depth DSM reso-
lutions. As such we present the 0.5 m resolution results here.
Coefficient of variation values were greater at the Hourglass
when compared to the meadow on every observation day
(Fig. 8). The seasonal pattern of variability in the Hourglass
started higher in January, decreased, then remained consis-
tent through March and peaked in May concurrently with the
onset of ablation. At the meadow, the variability decreased
throughout the season before peaking in May with the onset
of ablation.
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Figure 5. Seasonally averaged, spherical-fit variogram models from the Hourglass (HG) and meadow (MD) using the nearest-neighbor
resampling method. Colors represent different resolutions. Note different y axis scales.

Figure 6. Relative range and sill patterns of spherical-fit vari-
ogram models of detrended snow depth residuals using the nearest-
neighbor resampling method in the Hourglass (HG) and meadow
(MD) throughout the winter. Colors represent different snow depth
digital surface model (DSM) resolutions. The range plot excludes
the 20 m range values from the Hourglass for 13 February 2020 and
17 March 2020, which are greater than 200 m.

5 Discussion

In this study, we analyzed a time series of 11 high-resolution
snow depth DSMs derived from UAS and SfM techniques
in a 0.2 km2 study area containing steep, complex and pro-
tected, simple terrain in the Bridger Range of Montana, USA.
We collected these data to investigate the scales of spatial
variability of snow depth in complex mountain terrain, com-
pare with the spatial variability observed in adjacent sim-
ple mountain terrain, and explore the temporal evolution of
spatial-variability patterns of snow depth.

5.1 Snow depth differences and detrending

Comparisons between DSM-differenced and probed snow
depths highlight the challenge of sampling spatially repre-
sentative snow depth measurements with underlying vegeta-
tion. The 1 m2 validation point measurements had an average
range of 0.13 m, while the mean difference between DSM-
differenced snow depths and in situ probed snow depths was
0.27 m (Table 1). Both of these point and observational tool
measurement differences, as well as our additional error esti-
mates, could be attributed to the vegetation captured in the
snow-free 8 July 2020 DSM. This vegetated surface had
greater than 0.5 m of vertical variability across horizontal
distances less than 1 m and compressed at an unquantified
and spatially heterogenous rate under the gradually increas-
ing snowpack. This vegetation effect is largely confined to
the lower elevations of our study site, which is also primar-
ily where we collected our validation point measurements.
Vegetation effect is a recognized weakness of UAS-derived
snow depth measurement and helps explain the differences
we observed between the DSM-differenced snow depths and
probed validation point measurements in this study (Bühler
et al., 2016).

Previous research identified wind direction as a contribut-
ing variable to their spatial-variability findings (Clemenzi et
al., 2018; Deems et al., 2006; Mendoza et al., 2020; Mott and
Lehning, 2010; Mott et al., 2018). Our results suggest that el-
evation is the most significant predictor in directional snow
distribution bias in our dataset, and we detrended the DSMs
on this metric.

5.2 DSM resampling methods

Our project analyzed the spatial variability of snow depth
across spatial resolutions spanning 3 orders of magnitude
(0.02 to 20 m). Given this large resampling need, we were
interested in the effects of resampling techniques on the re-
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Figure 7. Seasonally averaged range, sill, and nugget values for each resolution from spherical-fit models in the Hourglass (HG) and meadow
(MD) using the nearest-neighbor resampling method. Colors represent different snow depth digital surface model (DSM) resolutions.

Figure 8. Coefficient of variation values (%) for each observation
day at the Hourglass (HG, circles) and meadow (MD, triangles) as
calculated from all resolutions (m) of snow depth digital surface
models (DSMs) using the nearest-neighbor resampling method. The
points are slightly scattered horizontally around the collection dates
(grey vertical lines) to allow for clearer viewing and interpretation.
Colors represent different snow depth DSM resolutions.

sultant spatial variability. Previous research identifies over-
smoothing as a concern with resampling methods which
rely on averaging because it results in decreasing the abso-
lute magnitude of observed variance (Fassnacht and Deems,
2006; Melvod and Skaugen, 2013). We found very high
correlation of residual snow depths (Sect. 4.2) between all
resampling techniques at spatial resolutions finer than 1 m
(Fig. A2). As resolution increased beyond 1 m, correlation

begins to decrease, especially in the more heterogenous ter-
rain of the Hourglass. Closer inspection of cell-by-cell dif-
ferences reveals the cubic convolution and aggregated mean
methods producing unrealistic snow depth residual artifacts
near areas of greater snow depth variability, such as the
avalanche crown, near cornices, and in the upper start zone.
This is probably due to these resampling techniques’ lim-
ited resistance to outliers. Additionally, we observed very
similar patterns in the experimental variograms between
nearest-neighbor and cubic-convolution methods (Fig. A3).
Consistently slightly lower semivariance values in cubic-
convolution resampled experimental variograms point to-
wards potential oversmoothing of the natural variability seen
in the nearest-neighbor resampled experimental variograms.
On the other hand, subtle differences in the cubic convolu-
tion experimental variograms propagated larger differences
in the spherically fit models (Fig. A4) and resulted in both
greater ranges of autocorrelation and higher semivariance
values (Figs. A5 and A6). The range and semivariance val-
ues observed at 0.25, 0.5, and 1 m resolutions resembled
those found at 2.5 and 5 m resolutions in the nearest-neighbor
spherically fit models. As spatial resolutions coarsen, aver-
aging resampling methods produce longer ranges (Fassnacht
and Deems, 2006) and, with that, higher sill values. We are
confident that nearest-neighbor resampling methods depict
the true patterns of spatial variability of snow depth at fine
resolutions within our study area because of the preservation
of real observed snow depth values and the high correlation
to other resampling methods. Given the diverging results at
resolutions greater than 1 m, we urge careful consideration of
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resampling techniques for coarser spatial resolutions in fu-
ture work.

5.3 Scales of spatial variability

Many previous studies utilized 1 m resolution sampling grids
(Clemenzi et al., 2018; De Michele et al., 2016; Deems et
al., 2013; López-Moreno et al., 2015; Mendoza et al., 2020;
Meyer and Skiles, 2019; Trujillo et al., 2009) but without
detailed analysis to determine if this resolution is sufficient
to capture the patterns of spatial variability. Our results in-
dicate 1 m resolution is an insufficient resolution to capture
the complete pattern of snow depth spatial variability in the
steep, complex mountain terrain of the Hourglass. At our
site, 0.5 m resolution results capture the spatial-variability
patterns seen in all finer resolutions (0.02, 0.05, 0.1, and
0.25 m) in each observation day at the Hourglass (Fig. 5),
while the 1 m resolution only captures these patterns on 7 of
our 11 observation days. Maximum variation exists within
a 15 m range for all sub-0.5 m resolution variograms with
a decreasing variance as the range continues to grow be-
yond the sill. Coarser-resolution variograms exhibit increas-
ing variance at greater ranges, with increasing variance be-
yond the sill. While 1 m, and even 2.5 m, resolutions have
similar ranges as finer-resolution models on some observa-
tion days, the mean range values increase dramatically be-
tween 0.5 m (15 m), 1 m (29 m), and 2.5 m (48 m) resolutions
and decrease minimally below 0.5 m resolutions (10 to 12 m
for 0.02 and 0.25 m resolutions, respectively) (Table 2 and
Fig. 7). Our results suggest that a 0.5 m sampling resolution
is the coarsest sampling resolution necessary to capture all
small-scale spatial variability of snow depth in the complex
mountain terrain of our study site.

However, our results suggest 2.5 m resolution sampling
grids are adequate to capture spatial variability in the pro-
tected terrain at the meadow. The finer-resolution patterns
evident in the mean variograms of the meadow are similar
to the 2.5 m resolution, while the 5, 10, and 20 m resolutions
differ distinctly with generally larger range values (Fig. 5).
The autocorrelation range values at the meadow scale di-
rectly with snow depth DSM resolution, while the sill val-
ues remain consistent across all snow depth DSM resolutions
(Fig. 7). Given this relationship, the 2.5 m resolution captures
both the fine- and coarse-resolution patterns in the meadow.
This distinct difference in snow depth spatial variability be-
tween complex and simple terrain provides evidence of the
contrasting snow distributions in the two mountain topogra-
phies.

Previous research reported autocorrelation range values
for snow depths of 15–25 m in a variety of mountain ter-
rain with an additional correlated scaling break above 50 m
(Fassnacht and Deems, 2006; Clemenzi et al., 2018; López-
Moreno et al., 2015; Mendoza et al., 2020; Trujillo et al.,
2009). We found consistently less than 20 m range values
in the steep, complex terrain in the Hourglass at finer spa-

tial resolutions and greater than 50 m range values in the
meadow at all resolutions (Table 2). Our results also sug-
gest that the range of autocorrelation increased throughout
the winter at both sites. We attribute this to increasingly ho-
mogenous snow depth distributions over larger distances due
to wind redistribution near ridges (Mott and Lehning, 2010;
Trujillo et al., 2007) and small-scale redistribution processes
(Mott et al., 2011). Increasingly leptokurtic distributions ev-
ident in scene-wide violin plots, especially at the meadow,
indicate that snow depth distributions were largely concen-
trated near the mean snow depth for each given observation
day (Fig. A9) and became more uniform as snow depth in-
creased.

Our results show that snow depth variability generally de-
creased throughout the season in the complex terrain of the
Hourglass (Fig. 8). This suggests that a deeper snowpack
tends to decrease the spatial variability of snow depth as
terrain and vegetation features become less influential on
snow depth distribution across space (Deems et al., 2006; El-
der et al., 1991; Harder et al., 2016; Trujillo et al., 2009).
There was a slight increase in snow depth variability at the
Hourglass following two notable events: a natural avalanche
on 26 February and the first major spring melt during the
first half of May (Fig. 4). An increase in sill values and a
clear distribution change of snow depth residuals provide
evidence for these snow depth distribution shifts (Fig. A9).
The spring-melt-aligned increase in spatial variability is sim-
ilar to changes during ablation periods reported by López-
Moreno et al. (2015) who used the coefficient of variation as
the measure of variability over the course of 8 observation
days spread over two winters.

5.4 Limitations

Snow depth DSM creation through UAS and SfM pho-
togrammetry workflows is distinctly challenged by snow sur-
face conditions and their interaction with local lighting (Büh-
ler et al., 2016, 2017; Goetz and Brenning, 2019). DSMs
from certain observation days had to be removed from fur-
ther analysis due to poor quality, which can be attributed
to homogenous snow surfaces that occurred due to either
recent snowfall with minimal wind, cloud cover producing
low light, or a combination of both. The wind-sheltered and
nearly flat terrain of the meadow limited the influence of
surface-texture-creating processes, such as wind redistribu-
tion and natural snow sluffing, resulting in uniform mini-
mally textured snow surfaces and more observed days re-
moved from further analysis (Table A3). These poor-quality
models affected errors in snow depth measurement (Tables 1,
A4) and, once removed, the error in our remaining models
was comparable to the reported error margins of other sim-
ilar UAS-derived snow depth research (Adams et al., 2018;
Eberhard et al., 2021; Revuelto et al., 2021). Therefore, we
are confident that our retained UAS-derived snow depth ob-
servations in steep mountain terrain are accurate.
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The analytical approach used in this study is limited by
computational resource availability. The processing time for
variogram analysis scaled directly with snow depth DSM
resolutions (Fig. A10) and increased exponentially at finer
resolutions while processing in parallel on the USGS Yeti
supercomputer (specifications online). We utilized a simple
random sample of 3 million points for all 0.02 and 0.05 m
resolution DSMs to avoid memory overloading. Processing
times for high-resolution DSM analysis at resolutions finer
than 0.5 m offered little additional value (see Figs. 5, 6, and
7) given the computational requirements, thereby support-
ing a spatial sampling grid of 0.5 m for snow depth spatial-
variability analysis.

Our results are from a thorough analysis of a single study
site and under the influence of only the interactions of the
local topography and meteorological events from one win-
ter season. The spatially limited in situ snow depth valida-
tion measurements are not completely representative of our
entire research site, particularly at upper elevations near the
ridgeline. Additionally, our snow depth measurement errors
from the UAS–SfM photogrammetry process may contribute
to snow depth spatial-variability error, but these errors are
challenging to accurately quantify (Redpath et al., 2018) and
likely contribute a trivial amount (Adams et al., 2018; Eber-
hard et al., 2021; Revuelto et al., 2021). We also attempted to
account for these small errors by conducting repeated UAV
flights over the course of a season, using ground control
points from the same locations on both snow-free and snow-
covered sampling flights, and choosing a site with a relatively
deep snowpack (Goetz and Brenning, 2019). Future snow
depth spatial-variability research should consider observing
a wider variety of complex mountain terrain features, differ-
ent snow and avalanche climates, as well as using additional
remote sensing tools for further validation or comparison.

6 Conclusions

This study quantifies the relevant spatial sampling scales
for accurately mapping snow depth spatial variability in the
complex mountain terrain of a study site in the Bridger Range
of Montana, USA. We used a time series of uncrewed aerial
systems (UAS)-derived centimeter-scale models of evolving
snow distribution in a steep, complex couloir and an adja-
cent sheltered, flat mountain meadow. Our results suggest
that a nearest-neighbor resampling technique maintains the
naturally occurring spatial variability of snow depths at spa-
tial resolutions of 1 m or finer. We demonstrate that 0.5 m
sample spacing resolution is necessary for accurately captur-
ing the naturally occurring spatial variability of snow depth
in complex terrain at our study site. This finding contrasts
with previous research that typically utilized 1 m resolution
models. However, in protected, simple mountain terrain we
show that 2.5 m sample spacing is sufficient. This test of
extremely fine-resolution surface models is relevant for the

planning of future snow depth studies in mountain environ-
ments both from a spatial variability and processing perspec-
tive. Not only does capturing 0.5 m resolution data increase
field efficiency, whether by traditional methods or using re-
mote sensing approaches, but it also decreases the compu-
tational expense of processing and analyzing the data. This
resolution improves our ability to observe large spatial ex-
tents with confidence that accurate measurements of snow
depth spatial variability are captured.

We show consistent snow depth autocorrelation ranges to
be 10–20 m in steep, complex terrain of the Hourglass and
50–65 m in the meadow, which aligns with scaling breaks
identified in previous literature on snow depth spatial vari-
ability (Deems et al., 2006; López-Moreno et al., 2015; Men-
doza et al., 2020). We also show that the steep, complex ter-
rain in the Hourglass exhibited greater spatial variability over
smaller distances throughout the winter than the protected
simple terrain of the meadow. Additionally, we show that the
seasonal evolution of spatial variability is not the same in
both topographies. The specific spatial and temporal scales
at which snow depth varies within these two terrains influ-
ence sampling strategies as they relate to topography and our
understanding of snow distributions within the varied moun-
tain landscape we depend on for water resource storage and
recreation.

Appendix A

Table A1. Average locational error for UAS-collected imagery after
PPK processing. Mean locational difference values are calculated
from all images collected and processed on a given field day and
have been calculated for x, y, and z (latitude, longitude, and eleva-
tion, respectively) directions.

Date Post PPK Post PPK Post PPK
diff x (m) diff y (m) diff z (m)

10 January 2020 0.003 0.001 0.19
15 January 2020 0.002 0.006 0.19
4 February 2020 0.006 0.0004 0.19
13 February 2020 0.004 0.001 0.19
21 February 2020 0.006 0.006 0.19
27 February 2020 0.015 0.006 0.19
6 March 2020 0.005 0.003 0.19
10 March 2020 0.004 0.009 0.19
17 March 2020 0.001 0.003 0.19
14 May 2020 0.0004 0.001 0.19
25 May 2020 0.005 0.004 0.19
8 July 2020 0.017 0.022 0.19
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Table A2. Models removed due to poor quality.

Location Observation dates removed from analysis

Hourglass 7 January 2020
Meadow 7 January 2020, 10 January 2020, 4 February 2020, 13 February 2020, 10 March 2020, 14 May 2020

Table A3. Summary of statistics of all measured and uncrewed aerial systems (UAS)-derived snow depths (HS) from the Hourglass and
meadow on all sampling days. Low-quality modeled meadow days removed from analysis in bold. All values reported in meters.

Sampling day Brackett Mean Probed UAS-derived UAS-derived Mean difference RMSE of difference Standard deviation of
(all 2020) meadow AWS probed HS range mean HS at HS range between probed HS between probed HS and difference between probed

measured HS (m) HS (m) (m) validation points (m) (m) and UAS-derived HS (m) UAS-derived HS (m) HS and UAS-derived HS (m)

7 January 0.96 1.16 0.09 1.23 0.31 0.7 0.15 0.16
10 January 1.11 1.22 0.13 2.36 0.1 1.14 1.14 0.05
15 January 1.22 1.41 0.11 1.8 0.28 0.39 0.41 0.17
4 February 1.51 1.73 0.11 2.74 0.59 1.01 1.04 0.27
13 February 2.22 2.59 1.11 2.28 0.63 0.32 0.86 0.98
21 February 2.11 2.12 0.12 2.39 4.25 0.27 1.1 1.11
27 February 2.11 2.26 0.29 2.03 0.41 0.23 0.34 0.29
6 March 1.90 1.95 0.79 1.79 1.51 0.16 0.37 0.35
10 March 2.07 2.12 0.17 1.7 1.63 0.42 0.74 0.7
17 March 2.01 2.11 0.2 2.35 0.57 0.24 0.31 0.22
14 May 1.57 1.75 0.65 1.92 3.42 0.31 0.81 0.77
25 May 1.19 1.37 0.14 1.51 0.17 0.15 0.17 0.09

Table A4. SAGA-GIS DTM filter tool settings.

Setting Values

Radius 10 m
Slope 30◦

Use confidence intervals Yes

Figure A1. Snow depth uncrewed aerial systems (UAS)-derived er-
ror (m) throughout the 2019–2020 winter field season. Each vari-
able is calculated with all manually probed validation points and
corresponding UAS-derived snow depths for each observation day.

Table A5. Resolution-averaged root mean squared error (RMSE)
and normalized median absolute deviation (NMAD) of spherical-fit
variogram models of the Hourglass (HG) and meadow (MD). All
results are unitless values of semivariance.

Location Resolution (m) Average RMSE Average NMAD

HG 0.02 0.176218 0.16362
HG 0.05 0.174146 0.163597
HG 0.1 0.171359 0.160636
HG 0.25 0.165605 0.156143
HG 0.5 0.158617 0.149346
HG 1 0.133527 0.125087
HG 2.5 0.10112 0.09462
HG 5 0.041416 0.04496
HG 10 0.065416 0.067764
HG 20 0.181545 0.082836
MD 0.02 0.021752 0.020394
MD 0.05 0.020563 0.01912
MD 0.1 0.018766 0.017849
MD 0.25 0.01708 0.016117
MD 0.5 0.015251 0.016166
MD 1 0.013839 0.015157
MD 2.5 0.01285 0.01327
MD 5 0.011784 0.012584
MD 10 0.009675 0.008814
MD 20 0.078682 0.026842
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Figure A2. Pearson correlations of nearest neighbor (nn), cubic convolution (cc), aggregated mean (mean), and aggregated median (median)
resampled snow depth residuals for the Hourglass (HG) and meadow (MD) locations for each field day. Each row represents nearest-neighbor
correlations with cubic convolution (top), aggregated mean (middle), and aggregated median (bottom). Colors represent different snow depth
DSM resolutions.

Figure A3. Experimental variograms of detrended snow depth residuals from the Hourglass (HG) and the meadow (MD). Each panel
depicts a specific observation day, with solid lines representing nearest-neighbor (NN) resampling methods, dashed lines representing cubic-
convolution (CC) resampling methods, and colors representing different snow depth DSM resolutions. Five observation days were removed
from the meadow site time series due to poor model quality. Note different y axis scales for the HG and MD rows.
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Figure A4. Spherically fit variograms of detrended snow depth residuals from the Hourglass (HG) and the meadow (MD). Each panel
depicts a specific observation day, with solid lines representing nearest-neighbor (NN) resampling methods, dashed lines representing cubic-
convolution (CC) resampling methods, and colors representing different snow depth DSM resolutions. Five observation days were removed
from the meadow site time series due to poor model quality. Note different y axis scales for the HG and MD rows.

Figure A5. Range values from spherically fit variograms of detrended snow depth residuals from the Hourglass (HG) and the meadow (MD).
Each panel depicts a specific observation day, with circles representing cubic-convolution (CC) resampling methods, triangles representing
nearest-neighbor (NN) resampling methods, and colors representing different snow depth DSM resolutions. Five observation days were
removed from the meadow site time series due to poor model quality.
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Figure A6. Sill (semivariance) values from spherically fit variograms of detrended snow depth residuals from the Hourglass (HG) and the
meadow (MD). Each panel depicts a specific observation day, with circles representing cubic-convolution (CC) resampling methods, triangles
representing nearest-neighbor (NN) resampling methods, and colors representing different snow depth DSM resolutions. Five observation
days were removed from the meadow site time series due to poor model quality.
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Figure A7. Time series of detrended snow depth maps of the Hourglass study site.
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Figure A8. Time series of detrended snow depth maps of the meadow study site.
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Figure A9. Violin plots of detrended snow depth residuals in the Hourglass (HG) and meadow (MD) sites with colors representing different
resolutions. Black dots represent median values and color shades represent the distribution of points for each resolution on each sampling
day.
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Figure A10. Variogram processing times for the 27 February 2020
observation day. Colors indicate different snow depth digital sur-
face model (DSM) resolutions and the number labels are the vari-
ogram processing times (in seconds) for each DSM. Note that fully
processing the 0.05 and 0.02 m grids was too computationally ex-
pensive even when using a supercomputer. Therefore, we randomly
sampled three million points from those DSMs before calculating
the variograms. Thus, the processing times for 0.05 and 0.02 m are
similar.

Code and data availability. The time series of snow depth digi-
tal surface models (before vegetation masking, detrending, and
outlier removal), the vegetation-masked Hourglass and meadow
shapefiles, and .csvs of data for the figures presented are avail-
able in a U.S. Geological Survey data release, located at:
https://doi.org/10.5066/P9YCIA1R (Miller et al., 2022).
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