Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1873-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1873-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
Fengguan Gu
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
China
Qinghua Yang
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
China
Frank Kauker
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Am Handelshafen 12, 27570 Bremerhaven, Germany
Ocean Atmosphere Systems, Tewesstseg 4, 20249 Hamburg, Germany
Changwei Liu
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
China
Guanghua Hao
Key Laboratory of Marine Hazards Forecasting, National Marine
Environmental Forecasting Center, Ministry of
Natural Resources, Beijing 100081, China
Chao-Yuan Yang
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
China
Jiping Liu
Department of Atmospheric and Environmental Sciences, State University of
New York at Albany, Albany, NY, USA
Petra Heil
Australian Antarctic Division, Australian Antarctic Program
Partnership, Private Bag 80, Hobart, Tas 7001, Australia
Xuewei Li
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
China
Bo Han
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Sun Yat-sen University, and Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
China
Related authors
No articles found.
Hu Yang, Xiaoxu Shi, Xulong Wang, Qingsong Liu, Yi Zhong, Xiaodong Liu, Youbin Sun, Yanjun Cai, Fei Liu, Gerrit Lohmann, Martin Werner, Zhimin Jian, Tainã M. L. Pinho, Hai Cheng, Lijuan Lu, Jiping Liu, Chao-Yuan Yang, Qinghua Yang, Yongyun Hu, Xing Cheng, Jingyu Zhang, and Dake Chen
Clim. Past, 21, 1263–1279, https://doi.org/10.5194/cp-21-1263-2025, https://doi.org/10.5194/cp-21-1263-2025, 2025
Short summary
Short summary
For 1 century, the hemispheric summer insolation is proposed as a key pacemaker of astronomical climate change. However, an increasing number of geologic records reveal that the low-latitude hydrological cycle shows asynchronous precessional evolutions that are very often out of phase with the summer insolation. Here, we propose that the astronomically driven low-latitude hydrological cycle is not paced by summer insolation but by shifting perihelion.
Mukund Gupta, Heather Regan, Younghyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
The Cryosphere, 19, 1241–1257, https://doi.org/10.5194/tc-19-1241-2025, https://doi.org/10.5194/tc-19-1241-2025, 2025
Short summary
Short summary
The sea ice cover is composed of floes, whose shapes set the material properties of the pack. Here, we use a satellite product (ICESat-2) to investigate these floe shapes within the Weddell Sea in Antarctica. We find that floes tend to become smaller during the melt season, while their thickness distribution exhibits different behavior between the western and southern regions of the pack. These metrics will help calibrate models and improve our understanding of sea ice physics across scales.
Diana Francis, Ricardo Fonseca, Narendra Nelli, Petra Heil, Jonathan Wille, Irina Gorodetskaya, and Robert Massom
EGUsphere, https://doi.org/10.5194/egusphere-2024-3535, https://doi.org/10.5194/egusphere-2024-3535, 2025
Short summary
Short summary
This study investigates the impact of atmospheric rivers and associated atmospheric dynamics on sea-ice thickness and snow depth at a coastal site in East Antarctica during July–November 2022 using in-situ measurements and numerical modelling. The passage of an atmospheric river induced a reduction of up to 0.06 m in both fields. Precipitation occurred from the convergence of katabatic winds with advected low-latitude moist air.
Yanjun Li, Violaine Coulon, Javier Blasco, Gang Qiao, Qinghua Yang, and Frank Pattyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-2916, https://doi.org/10.5194/egusphere-2024-2916, 2024
Short summary
Short summary
We incorporate ice damage processes into an ice-sheet model and apply the new model to Thwaites Glacier. The upgraded model more accurately captures the observed ice geometry and mass balance of Thwaites Glacier over 1990–2020. Our simulations show that ice damage has a notable impact on the ice sheet evolution, ice mass loss and the resulted sea-level rise. This study highlights the necessity for incorporating ice damage into ice-sheet models.
Ziying Yang, Jiping Liu, Mirong Song, Yongyun Hu, Qinghua Yang, and Ke Fan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1001, https://doi.org/10.5194/egusphere-2024-1001, 2024
Short summary
Short summary
Antarctic sea ice has changed rapidly in recent years. Here we developed a deep learning model trained by multiple climate variables for extended seasonal Antarctic sea ice prediction. Our model shows high predictive skills up to 6 months in advance, particularly in predicting extreme events. It also shows skillful predictions at the sea ice edge and year-to-year sea ice changes. Variable importance analyses suggest what variables are more important for prediction at different lead times.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024, https://doi.org/10.5194/tc-18-1215-2024, 2024
Short summary
Short summary
We present a new atmosphere–ocean–wave–sea ice coupled model to study the influences of ocean waves on Arctic sea ice simulation. Our results show (1) smaller ice-floe size with wave breaking increases ice melt, (2) the responses in the atmosphere and ocean to smaller floe size partially reduce the effect of the enhanced ice melt, (3) the limited oceanic energy is a strong constraint for ice melt enhancement, and (4) ocean waves can indirectly affect sea ice through the atmosphere and the ocean.
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023, https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Short summary
The Last Glacial Maximum (LGM) marks the most recent extremely cold and dry time period of our planet. Using AWI-ESM, we quantify the relative importance of Earth's orbit, greenhouse gases (GHG) and ice sheets (IS) in determining the LGM climate. Our results suggest that both GHG and IS play important roles in shaping the LGM temperature. Continental ice sheets exert a major control on precipitation, atmospheric dynamics, and the intensity of El Niño–Southern Oscillation.
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023, https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary
Short summary
Due to a lack of observations, the structure of the Arctic atmospheric boundary layer (ABL) remains to be further explored. By analyzing a year-round radiosonde dataset collected over the Arctic sea-ice surface, we found the annual cycle of the ABL height (ABLH) is primarily controlled by the evolution of ABL thermal structure, and the surface conditions also show a high correlation with ABLH variation. In addition, the Arctic ABLH is found to be decreased in summer compared with 20 years ago.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5019–5035, https://doi.org/10.5194/essd-14-5019-2022, https://doi.org/10.5194/essd-14-5019-2022, 2022
Short summary
Short summary
The PANDA automatic weather station (AWS) network consists of 11 stations deployed along a transect from the coast (Zhongshan Station) to the summit of the East Antarctic Ice Sheet (Dome A). It covers the different climatic and topographic units of East Antarctica. All stations record hourly air temperature, relative humidity, air pressure, wind speed and direction at two or three heights. The PANDA AWS dataset commences from 1989 and is planned to be publicly available into the future.
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere, 16, 4473–4490, https://doi.org/10.5194/tc-16-4473-2022, https://doi.org/10.5194/tc-16-4473-2022, 2022
Short summary
Short summary
The differences between Envisat and ICESat sea ice thickness (SIT) reveal significant temporal and spatial variations. Our findings suggest that both overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, and the AMSR-E snow depth biases and sea ice density uncertainties can possibly account for the differences between Envisat and ICESat SIT.
Sutao Liao, Hao Luo, Jinfei Wang, Qian Shi, Jinlun Zhang, and Qinghua Yang
The Cryosphere, 16, 1807–1819, https://doi.org/10.5194/tc-16-1807-2022, https://doi.org/10.5194/tc-16-1807-2022, 2022
Short summary
Short summary
The Global Ice-Ocean Modeling and Assimilation System (GIOMAS) can basically reproduce the observed variability in Antarctic sea-ice volume and its changes in the trend before and after 2013, and it underestimates Antarctic sea-ice thickness (SIT) especially in deformed ice zones. Assimilating additional sea-ice observations with advanced assimilation methods may result in a more accurate estimation of Antarctic SIT.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022, https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
Short summary
We present an improved coupled modeling system for Arctic sea ice prediction. We perform Arctic sea ice prediction experiments with improved/updated physical parameterizations, which show better skill in predicting sea ice state as well as atmospheric and oceanic state in the Arctic compared with its predecessor. The improved model also shows extended predictive skill of Arctic sea ice after the summer season. This provides an added value of this prediction system for decision-making.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Short summary
A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2, and the average calving rate was measured as 770.3 Gt yr-1. Iceberg calving is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. This annual iceberg calving dataset provides consistent and precise calving observations with the longest time coverage.
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021, https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary
Short summary
The ice–ocean heat flux is one of the key elements controlling sea ice changes. It motivates our study, which aims to examine the responses of modeled climate to three ice–ocean heat flux parameterizations, including two old approaches that assume one-way heat transport and a new one describing a double-diffusive ice–ocean heat exchange. The results show pronounced differences in the modeled sea ice, ocean, and atmosphere states for the latter as compared to the former two parameterizations.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Daniela Krampe, Frank Kauker, Marie Dumont, and Andreas Herber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-100, https://doi.org/10.5194/tc-2021-100, 2021
Manuscript not accepted for further review
Short summary
Short summary
Reliable and detailed Arctic snow data are limited. Evaluation of the performance of atmospheric reanalysis compared to measurements in northeast Greenland generally show good agreement. Both data sets are applied to an Alpine snow model and the performance for Arctic conditions is investigated: Simulated snow depth evolution is reliable, but vertical snow profiles show weaknesses. These are smaller with an adapted parametrisation for the density of newly fallen snow for harsh Arctic conditions.
Xuewei Li, Qinghua Yang, Lejiang Yu, Paul R. Holland, Chao Min, Longjiang Mu, and Dake Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-359, https://doi.org/10.5194/tc-2020-359, 2021
Preprint withdrawn
Short summary
Short summary
The Arctic sea ice thickness record minimum is confirmed occurring in autumn 2011. The dynamic and thermodynamic processes leading to the minimum thickness is analyzed based on a daily sea ice thickness reanalysis data covering the melting season. The results demonstrate that the dynamic transport of multiyear ice and the subsequent surface energy budget response is a critical mechanism actively contributing to the evolution of Arctic sea ice thickness in 2011.
Chao Min, Qinghua Yang, Longjiang Mu, Frank Kauker, and Robert Ricker
The Cryosphere, 15, 169–181, https://doi.org/10.5194/tc-15-169-2021, https://doi.org/10.5194/tc-15-169-2021, 2021
Short summary
Short summary
An ensemble of four estimates of the sea-ice volume (SIV) variations in Baffin Bay from 2011 to 2016 is generated from the locally merged satellite observations, three modeled sea ice thickness sources (CMST, NAOSIM, and PIOMAS) and NSIDC ice drift data (V4). Results show that the net increase of the ensemble mean SIV occurs from October to April with the largest SIV increase in December, and the reduction occurs from May to September with the largest SIV decline in July.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020, https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Short summary
In this work we demonstrate the existence of an observational threshold which identifies when waves are most likely to break sea ice. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. We show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for operational forecasting models.
Cited articles
Barthélemy, A., Goosse, H., Fichefet, T., and Lecomte, O.: On the
sensitivity of Antarctic sea ice model biases to atmospheric forcing
uncertainties, Clim. Dynam., 51, 1585–1603,
https://doi.org/10.1007/s00382-017-3972-7, 2018.
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the
ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001.
Bracegirdle, T. J. and Marshall, G. J.: The reliability of Antarctic
tropospheric pressure and temperature in the latest global reanalyses, J.
Climate, 25, 7138–7146, https://doi.org/10.1175/JCLI-D-11-00685.1, 2012.
Briegleb, B. P. and Light, B.: A Delta-Eddington multiple scattering
parameterization for solar radiation in the sea ice component of the
Community Climate System Model, NCAR Tech. Note NCAR/TN-472+ STR, 1-108,
https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/BL_NCAR2007.pdf (last access: 14 May 2022), 2007.
Bromwich, D. H., Fogt, R. L., Hodges, K. I., and Walsh, J. E.: A
tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in
the polar regions, J. Geophys. Res.-Atmos., 112, D10111,
https://doi.org/10.1029/2006JD007859, 2007.
Chemke, R. and Polvani, L. M.: Using multiple large ensembles to elucidate
the discrepancy between the 1979–2019 modeled and observed Antarctic sea
ice trends, Geophys. Res. Lett., 47, e2020G–e88339G,
https://doi.org/10.1029/2020GL088339, 2020.
Cheng, B., Zhang, Z., Vihma, T., Johansson, M., Bian, L., Li, Z., and Wu,
H.: Model experiments on snow and ice thermodynamics in the Arctic Ocean
with CHINARE 2003 data, J. Geophys. Res.-Oceans, 113, C9020,
https://doi.org/10.1029/2007JC004654, 2008.
Cheng, B., Mäkynen, M., Similä, M., Rontu, L., and Vihma, T.:
Modelling snow and ice thickness in the coastal Kara Sea, Russian Arctic,
Ann. Glaciol., 54, 105–113, https://doi.org/10.3189/2013AoG62A180, 2013.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C.
S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., and Henderson, T.
B.: The community climate system model version 3 (CCSM3), J. Climate, 19,
2122–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J.
B.: Bulk parameterization of air–sea fluxes: Updates and verification for
the COARE algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2,
2003.
Fréville, H., Brun, E., Picard, G., Tatarinova, N., Arnaud, L., Lanconelli, C., Reijmer, C., and van den Broeke, M.: Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica, The Cryosphere, 8, 1361–1373, https://doi.org/10.5194/tc-8-1361-2014, 2014.
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S.,
Vincent, C., Becagli, S., Gragnani, R., and Proposito, M.: Spatial and
temporal variability of snow accumulation in East Antarctica from traverse
data, J. Glaciol., 51, 113–124, https://doi.org/10.3189/172756505781829502,
2005.
Gascoin, S., Lhermitte, S., Kinnard, C., Bortels, K., and Liston, G. E.:
Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile, Adv. Water
Resour., 55, 25–39, https://doi.org/10.1016/j.advwatres.2012.11.013, 2013.
Granskog, M. A., Leppäranta, M., Kawamura, T., Ehn, J., and Shirasawa,
K.: Seasonal development of the properties and composition of landfast sea
ice in the Gulf of Finland, the Baltic Sea, J. Geophys. Res.-Oceans, 109,
C02020, https://doi.org/10.1029/2003JC001874, 2004.
Hao, G., Yang, Q., Zhao, J., Deng, X., Yang, Y., Duan, P., Zhang, L., Li,
C., and Cui, L.: Observation and analysis of landfast ice arounding
Zhongshan Station, Antarctic in 2016, Haiyang Xuebao, 9, 26–39,
https://doi.org/10.3969/j.issn.0253-4193.2019.09.003, 2019.
Hao, G., Pirazzini, R., Yang, Q., Tian, Z., and Liu, C.: Spectral albedo of
coastal landfast sea ice in Prydz Bay, Antarctica, J. Glaciol., 67, 1–11,
https://doi.org/10.1017/jog.2020.90, 2020.
Heil, P.: Atmospheric conditions and fast ice at Davis, East Antarctica: A
case study, J. Geophys. Res.-Oceans, 111, C5009,
https://doi.org/10.1029/2005JC002904, 2006.
Heil, P., Allison, I., and Lytle, V. I.: Seasonal and interannual variations
of the oceanic heat flux under a landfast Antarctic sea ice cover, J.
Geophys. Res.-Oceans, 101, 25741–25752, https://doi.org/10.1029/96JC01921,
1996.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF
Newsletter 147,
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (last access: 29 April 2020),
2016.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, T., Dupont, F.,
DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N., Lemieux,
J., Rasmussen, T., Ribergaard, M., Roberts, A., Turner, M., and Winton, M.:
CICE-Consortium/Icepack: Icepack1.1.1, Zenodo [code],
https://doi.org/10.5281/zenodo.3251032, 2019.
Jakobs, C. L., Reijmer, C. H., Smeets, C. P., Trusel, L. D., Van De Berg, W.
J., Van Den Broeke, M. R., and Van Wessem, J. M.: A benchmark dataset of in
situ Antarctic surface melt rates and energy balance, J. Glaciol., 66,
291–302, https://doi.org/10.1017/jog.2020.6, 2020.
Jeffries, M. O., Krouse, H. R., Hurst-Cushing, B., and Maksym, T.: Snow-ice
accretion and snow-cover depletion on Antarctic first-year sea-ice floes,
Ann. Glaciol., 33, 51–60, https://doi.org/10.3189/172756401781818266, 2001.
Jones, R. W., Renfrew, I. A., Orr, A., Webber, B., Holland, D. M., and
Lazzara, M. A.: Evaluation of four global reanalysis products using in situ
observations in the Amundsen Sea Embayment, Antarctica, J. Geophys. Res.-Atmos., 121, 6240–6257, https://doi.org/10.1002/2015JD024680, 2016.
Kawamura, T., Ohshima, K. I., Takizawa, T., and Ushio, S.: Physical,
structural, and isotopic characteristics and growth processes of fast sea
ice in Lützow-Holm Bay, Antarctica, J. Geophys. Res.-Oceans, 102,
3345–3355, https://doi.org/10.1029/96JC03206, 1997.
Lei, R., Li, Z., Cheng, B., Zhang, Z., and Heil, P.: Annual cycle of
landfast sea ice in Prydz Bay, east Antarctica, J. Geophys. Res.-Oceans,
115, C2006, https://doi.org/10.1029/2008JC005223, 2010.
Leppäranta, M.: A growth model for black ice, snow ice and snow
thickness in subarctic basins, Hydrol. Res., 14, 59–70,
https://doi.org/10.2166/nh.1983.0006, 1983.
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of
seven different atmospheric reanalysis products in the Arctic, J. Climate,
27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.1, 2014.
Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J.,
Merkouriadi, I., and Haapala, J.: A distributed snow-evolution model for
sea-ice applications (SnowModel), J. Geophys. Res.-Oceans, 123, 3786–3810,
https://doi.org/10.1002/2017JC013706, 2018.
Liu, C., Gao, Z., Yang, Q., Han, B., Wang, H., Hao, G., Zhao, J., Yu, L.,
Wang, L., and Li, Y.: Measurements of turbulence transfer in the
near-surface layer over the Antarctic sea-ice surface from April through
November in 2016, Ann. Glaciol., 61, 12–23,
https://doi.org/10.1017/aog.2019.48, 2020.
Liu, C., Hao, G., Li, Y., Zhao, J., Lei, R., Cheng, B., Gao, Z., and Yang,
Q.: The sensitivity of parameterization schemes in thermodynamic modeling of
the landfast sea ice in Prydz Bay, East Antarctica, J. Glaciol., 1–16,
https://doi.org/10.1017/jog.2022.8, 2022.
Massom, R. A., Eicken, H., Hass, C., Jeffries, M. O., Drinkwater, M. R.,
Sturm, M., Worby, A. P., Wu, X., Lytle, V. I., and Ushio, S.: Snow on
Antarctic sea ice, Rev. Geophys., 39, 413–445,
https://doi.org/10.1029/2000RG000085, 2001.
Massonnet, F., Fichefet, T., Goosse, H., Vancoppenolle, M., Mathiot, P., and König Beatty, C.: On the influence of model physics on simulations of Arctic and Antarctic sea ice, The Cryosphere, 5, 687–699, https://doi.org/10.5194/tc-5-687-2011, 2011.
Maykut, G. A. and McPhee, M. G.: Solar heating of the Arctic mixed layer,
J. Geophys. Res.-Oceans, 100, 24691–24703,
https://doi.org/10.1029/95JC02554, 1995.
Maykut, G. A. and Untersteiner, N.: Some results from a time-dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550–1575,
https://doi.org/10.1029/JC076i006p01550, 1971.
McPhee, M. G., Kottmeier, C., and Morison, J. H.: Ocean Heat Flux in the
Central Weddell Sea during Winter, J. Phys. Oceanogr., 29, 1166–1179,
https://doi.org/10.1175/1520-0485(1999)029<1166:OHFITC>2.0.CO;2,
1999.
Merkouriadi, I., Liston, G. E., Graham, R. M., and Granskog, M. A.:
Quantifying the potential for snow-ice formation in the Arctic Ocean,
Geophys. Res. Lett., 47, e2019GL085020,
https://doi.org/10.1029/2019GL085020, 2020.
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423,
https://doi.org/10.1073/pnas.1906556116, 2019.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Perovich, D. K. and Maykut, G. A.: Solar heating of a stratified ocean in
the presence of a static ice cover, J. Geophys. Res.-Oceans, 95,
18233–18245, https://doi.org/10.1029/JC095iC10p18233, 1990.
Powell, D. C., Markus, T., and Stössel, A.: Effects of snow depth forcing on Southern Ocean sea ice simulations, J. Geophys. Res.-Oceans, 110, C6001, https://doi.org/10.1029/2003JC002212, 2005.
Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A.,
Koenig, Z., Villacieros Robineau, N., and Granskog, M. A.: Observations of
flooding and snow-ice formation in a thinner Arctic sea-ice regime during
the N-ICE2015 campaign: Influence of basal ice melt and storms, J. Geophys.
Res.-Oceans, 122, 7115–7134, https://doi.org/10.1002/2016JC012011, 2017.
Roussel, M.-L., Lemonnier, F., Genthon, C., and Krinner, G.: Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations, The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, 2020.
Saloranta, T. M.: Modeling the evolution of snow, snow ice and ice in the
Baltic Sea, Tellus A, 52, 93–108,
https://doi.org/10.3402/tellusa.v52i1.12255, 2000.
Schlosser, E., Haumann, F. A., and Raphael, M. N.: Atmospheric influences on the anomalous 2016 Antarctic sea ice decay, The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018, 2018.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Clim. Change, 110, 1005–1027,
https://doi.org/10.1007/s10584-011-0101-1, 2012.
Stuecker, M. F., Bitz, C. M., and Armour, K. C.: Conditions leading to the
unprecedented low Antarctic sea ice extent during the 2016 austral spring
season, Geophys. Res. Lett., 44, 9008–9019,
https://doi.org/10.1002/2017GL074691, 2017.
Tanji, S., Inatsu, M., and Okaze, T.: Development of a snowdrift model with
the lattice Boltzmann method, Prog. Earth Planet. Sci., 8, 1–16,
https://doi.org/10.1186/s40645-021-00449-0, 2021.
Tetzner, D., Thomas, E., and Allen, C.: A Validation of ERA5 Reanalysis Data
in the Southern Antarctic Peninsula–Ellsworth Land Region, and Its
Implications for Ice Core Studies, Geosciences, 9, 289,
https://doi.org/10.3390/geosciences9070289, 2019.
Thiery, W., Gorodetskaya, I. V., Bintanja, R., Van Lipzig, N. P. M., Van den Broeke, M. R., Reijmer, C. H., and Kuipers Munneke, P.: Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica, The Cryosphere, 6, 841–857, https://doi.org/10.5194/tc-6-841-2012, 2012.
Tsamados, M., Feltham, D. L., and Wilchinsky, A. V.: Impact of a new
anisotropic rheology on simulations of Arctic sea ice, J. Geophys. Res.-Oceans, 118, 91–107, https://doi.org/10.1029/2012JC007990, 2013.
Turner, A. K. and Hunke, E. C.: Impacts of a mushy-layer thermodynamic
approach in global sea-ice simulations using the CICE sea-ice model, J.
Geophys. Res.-Oceans, 120, 1253–1275, https://doi.org/10.1002/2014JC010358,
2015.
Turner, A. K., Hunke, E. C., and Bitz, C. M.: Two modes of sea-ice gravity
drainage: A parameterization for large-scale modeling, J. Geophys. Res.-Oceans, 118, 2279–2294, https://doi.org/10.1002/jgrc.20171, 2013.
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O.,
Bracegirdle, T. J., and Deb, P.: Unprecedented springtime retreat of
Antarctic sea ice in 2016, Geophys. Res. Lett., 44, 6868–6875,
https://doi.org/10.1002/2017GL073656, 2017.
Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A.,
Bricaud, C., Carton, J., Fučkar, N., Garric, G., and Iovino, D.: An
assessment of ten ocean reanalyses in the polar regions, Clim. Dynam., 52,
1613–1650, https://doi.org/10.1007/s00382-018-4242-z, 2019.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar,
F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance
estimates from ERA5 and COSMO-REA6 reanalyses using ground and
satellite-based data, Sol. Energy, 164, 339–354,
https://doi.org/10.1016/j.solener.2018.02.059, 2018.
Vancoppenolle, M., Timmermann, R., Ackley, S. F., Fichefet, T., Goosse, H.,
Heil, P., Leonard, K. C., Lieser, J., Nicolaus, M., and Papakyriakou, T.:
Assessment of radiation forcing data sets for large-scale sea ice models in
the Southern Ocean, Deep-Sea Res., Pt. II, 58, 1237–1249,
https://doi.org/10.1016/j.dsr2.2010.10.039, 2011.
Van Den Broeke, M. R., Winther, J., Isaksson, E., Pinglot, J. F.,
Karlöf, L., Eiken, T., and Conrads, L.: Climate variables along a
traverse line in Dronning Maud Land, East Antarctica, J. Glaciol., 45,
295–302, https://doi.org/10.3189/S0022143000001799, 1999.
Van Den Broeke, M., Reijmer, C., and Van De Wal, R.: Surface radiation
balance in Antarctica as measured with automatic weather stations, J.
Geophys. Res.-Atmos., 109, D09103, https://doi.org/10.1029/2003JD004394,
2004.
van den Broeke, M., van de Berg, W. J., van Meijgaard, E., and Reijmer, C.: Identification of Antarctic ablation areas using a regional atmospheric climate model, J. Geophys. Res.-Atmos, 111, D18110, https://doi.org/10.1029/2006JD007127, 2006.
Van Den Broeke, M. R., Reijmer, C. H., and Van De Wal, R. S.: A study of the
surface mass balance in Dronning Maud Land, Antarctica, using automatic
weather stations, J. Glaciol., 50, 565–582,
https://doi.org/10.3189/172756504781829756, 2004.
Vignon, é., Traullé, O., and Berne, A.: On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica, Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, 2019.
Wang, C., Cheng, B., Wang, K., Gerland, S., and Pavlova, O.: Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard, Polar Res., 34, 20828, https://doi.org/10.3402/polar.v34.20828, 2015.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Wang, G., Hendon, H. H., Arblaster, J. M., Lim, E., Abhik, S., and van
Rensch, P.: Compounding tropical and stratospheric forcing of the record low
Antarctic sea-ice in 2016, Nat. Commun., 10, 1–9,
https://doi.org/10.1038/s41467-018-07689-7, 2019.
Wang, Y., Zhou, D., Bunde, A., and Havlin, S.: Testing reanalysis data sets
in Antarctica: Trends, persistence properties, and trend significance, J.
Geophys. Res.-Atmos., 121, 12–839, https://doi.org/10.1002/2016JD024864,
2016.
Yang, Q., Liu, J., Leppäranta, M., Sun, Q., Li, R., Zhang, L., Jung, T.,
Lei, R., Zhang, Z., and Li, M.: Albedo of coastal landfast sea ice in Prydz
Bay, Antarctica: Observations and parameterization, Adv. Atmos. Sci., 33,
535–543, https://doi.org/10.1007/s00376-015-5114-7, 2016a.
Yang, Y., Zhijun, L., Leppäranta, M., Cheng, B., Shi, L., and Lei, R.:
Modelling the thickness of landfast sea ice in Prydz Bay, East Antarctica,
Antarct. Sci., 28, 59–70, https://doi.org/10.1017/S0954102015000449, 2016b.
Zhang, J.: Increasing Antarctic sea ice under warming atmospheric and
oceanic conditions, J. Climate, 20, 2515–2529,
https://doi.org/10.1175/JCLI4136.1, 2007.
Zhang, J.: Modeling the impact of wind intensification on Antarctic sea ice
volume, J. Climate, 27, 202–214, https://doi.org/10.1175/JCLI-D-12-00139.1,
2014.
Zhao, J., Cheng, B., Yang, Q., Vihma, T., and Zhang, L.: Observations and
modelling of first-year ice growth and simultaneous second-year ice ablation
in the Prydz Bay, East Antarctica, Ann. Glaciol., 58, 59–67,
https://doi.org/10.1017/aog.2017.33, 2017.
Zhao, J., Cheng, B., Vihma, T., Yang, Q., Hui, F., Zhao, B., Hao, G., Shen,
H., and Zhang, L.: Observation and thermodynamic modeling of the influence
of snow cover on landfast sea ice thickness in Prydz Bay, East Antarctica,
Cold Reg. Sci. Technol., 168, 102869,
https://doi.org/10.1016/j.coldregions.2019.102869, 2019.
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.
The sea ice thickness was simulated by a single-column model and compared with in situ...