Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1873-2022
https://doi.org/10.5194/tc-16-1873-2022
Research article
 | 
17 May 2022
Research article |  | 17 May 2022

The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica

Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han

Related authors

Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2
Mukund Gupta, Heather Regan, Young Hyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
EGUsphere, https://doi.org/10.5194/egusphere-2024-1329,https://doi.org/10.5194/egusphere-2024-1329, 2024
Short summary
Extended seasonal prediction of Antarctic sea ice using ANTSIC-UNet
Ziying Yang, Jiping Liu, Mirong Song, Yongyun Hu, Qinghua Yang, and Ke Fan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1001,https://doi.org/10.5194/egusphere-2024-1001, 2024
Short summary
Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024,https://doi.org/10.5194/tc-18-1215-2024, 2024
Short summary
Unraveling the complexities of the Last Glacial Maximum climate: the role of individual boundary conditions and forcings
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023,https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
The characteristics of atmospheric boundary layer height over the Arctic Ocean during MOSAiC
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023,https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024,https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Sources of low-frequency variability in observed Antarctic sea ice
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024,https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Quantifying the Influence of Snow over Sea Ice Morphology on L-Band Microwave Satellite Observations in the Southern Ocean
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-81,https://doi.org/10.5194/egusphere-2024-81, 2024
Short summary
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024,https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023,https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary

Cited articles

Barthélemy, A., Goosse, H., Fichefet, T., and Lecomte, O.: On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties, Clim. Dynam., 51, 1585–1603, https://doi.org/10.1007/s00382-017-3972-7, 2018. 
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001. 
Bracegirdle, T. J. and Marshall, G. J.: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses, J. Climate, 25, 7138–7146, https://doi.org/10.1175/JCLI-D-11-00685.1, 2012. 
Briegleb, B. P. and Light, B.: A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, NCAR Tech. Note NCAR/TN-472+ STR, 1-108, https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/BL_NCAR2007.pdf (last access: 14 May 2022), 2007. 
Bromwich, D. H., Fogt, R. L., Hodges, K. I., and Walsh, J. E.: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions, J. Geophys. Res.-Atmos., 112, D10111, https://doi.org/10.1029/2006JD007859, 2007. 
Download
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.