Articles | Volume 16, issue 4
The Cryosphere, 16, 1469–1482, 2022
https://doi.org/10.5194/tc-16-1469-2022
The Cryosphere, 16, 1469–1482, 2022
https://doi.org/10.5194/tc-16-1469-2022
Research article
27 Apr 2022
Research article | 27 Apr 2022

Basal melt of the southern Filchner Ice Shelf, Antarctica

Ole Zeising et al.

Related authors

Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022,https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
On the evolution of an ice shelf melt channel at the base of Filchner Ice Shelf, from observations and viscoelastic modeling
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-350,https://doi.org/10.5194/tc-2021-350, 2021
Preprint under review for TC
Short summary
Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream
Ole Zeising and Angelika Humbert
The Cryosphere, 15, 3119–3128, https://doi.org/10.5194/tc-15-3119-2021,https://doi.org/10.5194/tc-15-3119-2021, 2021
Short summary
Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021,https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022,https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Automatic delineation of cracks with Sentinel-1 interferometry for monitoring ice shelf damage and calving
Ludivine Libert, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 1523–1542, https://doi.org/10.5194/tc-16-1523-2022,https://doi.org/10.5194/tc-16-1523-2022, 2022
Short summary
Ongoing grounding line retreat and fracturation initiated at the Petermann Glacier ice shelf, Greenland after 2016
Romain Millan, Jeremie Mouginot, Anna Derkacheva, Eric Rignot, Pietro Milillo, Enrico Ciraci, Luigi Dini, and Anders Bjørk
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-16,https://doi.org/10.5194/tc-2022-16, 2022
Revised manuscript accepted for TC
Short summary
Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022,https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Ice-shelf ocean boundary layer dynamics from large-eddy simulations
Carolyn Branecky Begeman, Xylar Asay-Davis, and Luke Van Roekel
The Cryosphere, 16, 277–295, https://doi.org/10.5194/tc-16-277-2022,https://doi.org/10.5194/tc-16-277-2022, 2022
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020a. a, b, c, d, e, f, g, h, i, j, k, l
Adusumilli, S., Fricker, H. A., Medley, B. C., Padman, L., Siegfried, M. R.: Data from: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, UC San Diego Library Digital Collections [data set], https://doi.org/10.6075/J04Q7SHT, 2020b. a
Alley, K. E., Scambos, T. A., Anderson, R. S., Rajaram, H., Pope, A., and Haran, T. M.: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids, J. Glaciol., 64, 321–332, https://doi.org/10.1017/jog.2018.23, 2018. a, b, c, d, e, f
Arnold, E., Leuschen, C., Rodriguez-Morales, F., Li, J., Paden, J., Hale, R., and Keshmiri, S.: CReSIS airborne radars and platforms for ice and snow sounding, Ann. Glaciol., 61, 58–67, https://doi.org/10.1017/aog.2019.37, 2020. a
Berger, S., Drews, R., Helm, V., Sun, S., and Pattyn, F.: Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica, The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, 2017. a
Download
Short summary
Remote-sensing-derived basal melt rates of ice shelves are of great importance due to their capability to cover larger areas. We performed in situ measurements with a phase-sensitive radar on the southern Filchner Ice Shelf, showing moderate melt rates and low small-scale spatial variability. The comparison with remote-sensing-based melt rates revealed large differences caused by the estimation of vertical strain rates from remote sensing velocity fields that modern fields can overcome.