Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5473-2021
https://doi.org/10.5194/tc-15-5473-2021
Research article
 | 
08 Dec 2021
Research article |  | 08 Dec 2021

Perspectives on future sea ice and navigability in the Arctic

Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen

Related authors

Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023,https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Aerosol-meteorology feedback diminishes the trans-boundary transport of black carbon into the Tibetan Plateau
Yuling Hu, Shichang Kang, Haipeng Yu, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-252,https://doi.org/10.5194/egusphere-2023-252, 2023
Short summary
Unexpectedly high concentrations of atmospheric mercury species in Lhasa, the largest city in the Tibetan Plateau
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 23, 3937–3953, https://doi.org/10.5194/acp-23-3937-2023,https://doi.org/10.5194/acp-23-3937-2023, 2023
Short summary
Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022,https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Comprehensive evaluation of black carbon effect on glacier melting on the Laohugou Glacier No. 12, Western Qilian Mountains
Jizu Chen, Wentao Du, Shichang Kang, Xiang Qin, Weijun Sun, Yang Li, Yushuo Liu, Lihui Luo, and Youyan Jiang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-179,https://doi.org/10.5194/tc-2022-179, 2022
Preprint withdrawn
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023,https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Patterns of wintertime Arctic sea-ice leads and their relation to winds and ocean currents
Sascha Willmes, Günther Heinemann, and Frank Schnaase
The Cryosphere, 17, 3291–3308, https://doi.org/10.5194/tc-17-3291-2023,https://doi.org/10.5194/tc-17-3291-2023, 2023
Short summary
A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023,https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Arctic sea ice radar freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: toward sea ice thickness observation from 1995 to 2021
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023,https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Rapid sea ice changes in the future Barents Sea
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023,https://doi.org/10.5194/tc-17-1445-2023, 2023
Short summary

Cited articles

Abe, M., Nozawa, T., Ogura, T., and Takata, K.: Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming, Atmos. Chem. Phys., 16, 14343–14356, https://doi.org/10.5194/acp-16-14343-2016, 2016. 
AMSA: Arctic marine shipping assessment 2009 report, Arctic Council, available at: https://digital.library.unt.edu/ark:/67531/metadc949512/m2/1/high_res_d/AMSA_2009_Report_2nd_print.pdf (last access: 2 December 2021), 2009. 
Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Mapping the future expansion of Arctic open water, Nat. Clim. Change, 6, 280–285, https://doi.org/10.1038/nclimate2848, 2015. 
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., and Streletskiy, D. A.: Permafrost is warming at a global scale, Nat. Commun., 10, 1–11, https://doi.org/10.1038/s41467-018-08240-4, 2019. 
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., and Parmentier, F.-J. W.: Key indicators of Arctic climate change: 1971–2017, Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019. 
Download
Short summary
Sea ice is retreating with rapid warming in the Arctic. It will continue and approach the worst predicted pathway released by the IPCC. The irreversible tipping point might show around 2060 when the oldest ice will have completely disappeared. It has a huge impact on human production. Ordinary merchant ships will be able to pass the Northeast Passage and Northwest Passage by the midcentury, and the opening time will advance to the next 10 years for icebreakers with moderate ice strengthening.