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Abstract. The retreat of sea ice has been found to be very sig-
nificant in the Arctic under global warming. It is projected to
continue and will have great impacts on navigation. Perspec-
tives on the changes in sea ice and navigability are crucial
to the circulation pattern and future of the Arctic. In this in-
vestigation, the decadal changes in sea ice parameters were
evaluated by the multi-model from the Coupled Model Inter-
comparison Project Phase 6, and Arctic navigability was as-
sessed under two shared socioeconomic pathways (SSPs)
and two vessel classes with the Arctic transportation acces-
sibility model. The sea ice extent shows a high possibility of
decreasing along SSP5-8.5 under current emissions and cli-
mate change. The decadal rate of decreasing sea ice extent
will increase in March but decrease in September until 2060,
when the oldest ice will have completely disappeared and the
sea ice will reach an irreversible tipping point. Sea ice thick-
ness is expected to decrease and transit in certain parts, de-
clining by —0.22 m per decade after September 2060. Both
the sea ice concentration and volume will thoroughly decline
at decreasing decadal rates, with a greater decrease in vol-
ume in March than in September. Open water ships will be
able to cross the Northern Sea Route and Northwest Passage
between August and October during the period from 2045 to
2055, with a maximum navigable percentage in September.
The time for Polar Class 6 (PC6) ships will shift to October—
December during the period from 2021 to 2030, with a max-
imum navigable percentage in October. In addition, the cen-
tral passage will be open for PC6 ships between September
and October during 2021-2030.

1 Introduction

The Arctic has experienced significant warming since the
1970s (Connolly et al., 2017). Along with the increasing sur-
face air temperature, Arctic communities have experienced
unprecedented changes, such as reduction of sea ice extent
and thickness, loss of the Greenland ice sheet, decrease in
snow coverage, and thawing of permafrost (Biskaborn et al.,
2019; Box et al., 2019; Brown et al., 2017; Loomis et al.,
2019). The sea ice extent has declined at a rate of approxi-
mately 3.8 % per decade. In comparison, perennial ice had a
higher proportion of loss of approximately 11.5 % per decade
during the period from 1979 to 2012 (Comiso and Hall,
2014). The average ice thickness near the end of the melt sea-
son decreased by 2.0m or 66 % between the pre-1990 sub-
marine period (1958-1976) and the CryoSat-2 period (2011-
2018) (Kwok, 2018). Continued declines in sea ice have been
projected by the Coupled Model Inter-comparison Project
Phase 5 in the Arctic through the end of the century (Mered-
ith et al., 2019).

Sea ice reflects a significant fraction of the solar radiation
because it has a high albedo. It also reduces the heat trans-
fer between the ocean and the atmosphere as it acts as an
insulator (Screen and Simmonds, 2010). With the retreat of
sea ice, thermohaline circulation has changed (Jourdain et al.,
2017), and global warming has intensified (Abe et al., 2016).
However, climate change has led to prolonged open water
conditions and large-scale Arctic shipping that will involve
ice channels (Barnhart et al., 2015; Huang et al., 2020a). The
Northern Sea Route (NSR) extends along the northern coast
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of Eurasia from Iceland to the Bering Strait, which shortens
the transit distance by approximately 15 %—50 % relative to
the southern routes through the Suez Canal (Buixadé Farré
et al., 2014). It is navigable for approximately 3 months per
year for ice-strengthened ships at the end of summer and the
beginning of autumn (Yu et al., 2021). The end of shipping
season for open water (OW) vessels has reached 24 October
since 2010 (Chen et al., 2019). However, navigability is still
affected by the ice regime, such as ice thickness and concen-
tration, around the Severnaya Zemlya islands, the Novosi-
birsk islands, and the East Siberian Sea. The Northwest Pas-
sage (NWP) follows the northern coast of North America and
crosses the Canadian Arctic archipelago. Compared to the
traditional Panama Canal route from western Europe to the
Far East, the NWP shortens the transit distance by 9000 km
(Howell and Yackel, 2004). The shortest navigable period
was up to 69 d during 2006-2015 (Liu et al., 2017), and the
first time of its being completely free of ice was reported
to occur in September 2007 (Cressey, 2007). Geographical
and political factors also pose some challenges to the naviga-
bility of passages and choice of routes (Ryan et al., 2020).
The straits along the NWP are at times narrow and shal-
low, which are easily clogged by free floating ice. NSR is
greater than NWP in terms of geography, while it still has
several choke points where ships must pass through shallow
straits between islands and the Russian mainland (Ostreng
et al., 2013). Apart from the geographical factor, the vari-
ous organizations and groups formed between the surround-
ing Arctic nations, as well as the disputes and agreements,
give impetuses for adopting the NSR. Russia has commit-
ted several large infrastructure projects to support the NSR,
such as the Yamal-Nenets railway and emergency rescue cen-
ters (Serova and Serova, 2019). China, which is characterized
as a near-Arctic state, also outlined the plans to build a Po-
lar Silk Road by building infrastructure and conducting trial
voyages (Tillman et al., 2019). For the development of so-
cioeconomics and marine transportation, future projections
of ice conditions and Arctic passages are increasingly impor-
tant, for which climatic changes should be considered (Gas-
card et al., 2017). Smith and Stephenson (2013) investigated
the potential of Arctic passages under representative concen-
tration pathway (RCP) 4.5 and RCP 8.5 and found that OW
ships and Polar Class 6 (PC6) ships (Table 1) will be able to
cross NSR and NWP in September by the mid-century, re-
spectively. The areas of the Arctic accessible to PC3, PC6,
and OW ships would rise to 95 %, 78 %, and 49 %, respec-
tively, of the circumpolar International Marine Organization
Guidelines Boundary area by the late 21st century (Stephen-
son et al., 2013). Melia et al. (2017) suggested that the Arctic
passages from Europe to Asia would be 10 d faster than con-
ventional routes by the mid-century and 13 d faster by the late
century. Recent research has shown that NSR might be acces-
sible earlier for OW ships in September 2021-2025, and the
navigable window would extend to August—October during
2026-2050 under shared socioeconomic pathways (SSPs) 2—
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4.5 (Chen et al., 2020). However, evaluating sea ice condi-
tions and Arctic navigability by a single climate model, even
one with a higher resolution, is insufficient.

This prospective study was designed to obtain further in-
sight into the future changes in sea ice in the Arctic and
the navigability of the Arctic during this century with up-to-
date ensemble climate models in the Coupled Model Inter-
comparison Project Phase 6 (CMIP6). To reduce uncertain-
ties of a single high-resolution model and multi-model aver-
age, models were filtered by comparing the historical simu-
lations and observations of sea ice extent, and the possible
SSPs were investigated with the average of multiple models.
The distributions of the linear trend of sea ice extent, concen-
tration, and thickness were explored in three stages (2021-
2040, 2041-2060, and 2061-2100). In addition, the changes
in sea ice volume and age were analyzed. The accessibility
of the Arctic and the navigable area were evaluated with the
Arctic Transportation Accessibility Model (ATAM) from the
Arctic Ice Regime Shipping System (AIRSS) for OW ships
and PC6 ships under SSP2—45 and SSP5-85 in 2021-2030
and 2045-2055.

2 Methods
2.1 Data and model selection

The new scenario framework SSP in CMIP6 was designed to
carry out research on climate change impacts and adaption
by combining pathways of future radiative forcing and cli-
mate changes with socioeconomic development (O’Neill et
al., 2014). SSP1 indicates a sustainable development, which
proceeds at a reasonably high pace. Technological change is
rapid, and inequalities are lessened and directed toward en-
vironmentally friendly processes. Unmitigated emissions are
high in SSP3. It is due to a rapidly growing population, mod-
erate economic growth, and slow technological change in the
energy sector. SSP2 is an intermediate case between SSP1
and SSP3. SSP5 occurs in the absence of climate policies,
energy demand is high, and most of this demand is met with
carbon-based fuels.

Compared with CMIP5 models, the CMIP6 multi-model
ensemble mean provides a more realistic estimate of the Arc-
tic sea ice extent (SIMIP Community, 2020), but the biases
of the models are still large (Shu et al., 2020). This study
selected models by comparing the historical trend of Arc-
tic sea ice extent in simulations with remote sensing obser-
vations during 1979-2012. The observation data come from
the Sea Ice Index of the National Snow and Ice Data Cen-
ter. The selected models are those that have a correlation co-
efficient between the original simulations and observations
greater than 0.8 (0.7 for March). Five-point moving averages
of the simulated and observed sea ice extent are displayed in
Fig. 1. The models passing the test are CESM2, MPI-ESM 1 -
2-HR, MPI-ESM1-2-LR, NorESM2-LM, NorESM2-MM,
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ACCESS-ESM1-5, AWI-CM-1-1-MR, and AWI-ESM-1-1-
LR in September and CESM2, MPI-ESM1-2-LR, ACCESS-
ESMI1-5, AWI-CM-1-1-MR, INM-CM5-0, MPI-ESM-1-2-
HAM, and AWI-ESM-1-1-LR in March. The mean of the
selected models corresponds well with the observations, and
the correlation coefficients are 0.884 and 0.817 in September
and March, respectively. However, sea ice datasets in SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 after 2020 have not
been released for CESM2, MPI-ESM-1-2-HAM, and AWI-
ESM-1-1-LR until now. In addition, AWI-CM-1-1-MR was
excluded from analyzing the navigability of the Arctic in the
absence of sea ice concentration. The spatial resolution of
monthly sea ice concentration and thickness was normalized
to 1° x 1° by bilinear interpolation. Variables in figures and
tables were from the ensemble means of selected models.

2.2 Accessibility evaluation

Safety and pollution are two of the opposite factors con-
sidered in developing regulatory transport standards. AIRSS
was designed to minimize the risk of pollution in the Arctic
due to damage to vessels by ice (Transport Canada, 1998).
ATAM, developed by AIRSS, is commonly used to quantify
the temporal and spatial accessibility in the Arctic, in which
the ice number (IN) represents the ability of a ship to enter
ice-covered water:

IN=C,-IM,, (1)

where C, is the sea ice concentration in grid a. IM,, is the
ice multiplier. It indicates the severity of each ice type for
the vessel and ranges from —4 to 2. Positive IM and IN rep-
resent less risk to the vessel and a safe region for naviga-
tion, respectively. Vessel class reflects the structural strength,
displacement, and power of a ship to break ice. PC6 ships
and OW ships are vessels with moderate ice strengthening
and without ice strengthening, respectively (IMO, 2002). In
this paper, the navigability of the Arctic for these two kinds
of ships was investigated under SSP2-45 and SSP5-85. The
corresponding IMs for the OW and PC6 ships are as follows
(SIT signifies sea ice thickness):

IMow = 2, if SIT=0cm,

1, if Ocm < SIT < 15¢cm,
—1, if 15cm <= SIT < 70cm, 2)
=2, if 70cm <= SIT < 120cm,
=3, if 120cm <= SIT < 151 cm,
—4, if SIT>=I151cm,
IMpcg = 2, if Ocm <= SIT < 70cm,
1, if 70cm <= SIT < 120cm,
—1, if 120cm <= SIT < 151cm, 3)
-3, if 151cm <= SIT < 189¢cm,
—4, if SIT>=189cm.
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Table 1. Vessel classes versus operating ice thickness.

Vessel class Maximum allowable Ice thickness

ice type (cm)
Polar Class 3 Second year No limit
Polar Class 6 Medium first year 0-120
Ordinary merchant  Open water/gray 0-15

3 Results
3.1 Future changes in sea ice area and extent

The extent and area are the most reliable products of sea ice
from satellite retrieval (Comiso, 2012; Notz, 2014). There-
fore, the sea ice extent was taken as an indicator to eval-
uate models and future scenarios. As shown in Fig. 2, the
observation trend was made with least square regression of
sea ice extent from 1979 to 2019, in which sea ice might
completely disappear in September after 2073. In addition
to the classical pathways, such as SSP1-2.6, SSP2-4.5, and
SSP5-8.5, CMIP6 provides a variety of new selections. How-
ever, SSP1-1.9, SSP4-34, and SSP4-6.0 were not discussed
in the multi-scenario evaluation for the less common mod-
els. According to historical development and scenarios, sea
ice will retreat in the future with a more significant de-
creasing trend in September. The difference between SSPs
and observation trends is greater in March than in Septem-
ber, while both have large dispersions among pathways after
2050. Compared with others, SSP5-8.5 has the greatest cor-
relation coefficients, which are 0.784 and 0.712 in September
and March, respectively, with the observation trend; SSP2-
4.5 comes second. This suggests that Arctic sea ice might
be the worst scenario in the future under the current emis-
sion and climate change trends. The Arctic is regarded as
“ice free” when the sea ice area is less than 1million km?
(Lenton et al., 2019). The extrapolated observed time series
suggests “ice free” will occur in September 2060, and ice
will almost completely disappear under SSP2-4.5, SSP3-7.0,
and SSP5-8.5 by the end of the century.

“Ice free” was taken as one of the tipping points of cli-
mate change with significant irreversible effects (Lenton et
al., 2019). Three stages were extracted for the changes in sea
ice extent in Fig. 3. Decadal linear trends and probability dis-
tributions with an interval of 0.4 million km? per decade were
calculated to evaluate the decline in sea ice and the difference
in models. Sea ice linear trends are less than zero in both
March and September in 2021-2100, while the retreat will
be more remarkable in September before 2060, especially
during 2021-2040, after which the decline is mainly shown
in March because the extent might be close to “ice free” in
September. The dispersion of SSPs will increase in March
over time, as will the absolute decadal trends of SSP3-7.0 and
SSP5-8.5. However, it is aggregated in September, and the
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Figure 1. The observations and five-point moving averages of sea ice extent in March and September during 1979-2012.
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Figure 2. Sea ice extent under multiple scenarios and observation trends in March and September.

decadal variability in SSPs, especially SSP2-4.5 and SSP5-
8.5, has a decreasing trend. Multi-model simulations mainly
range from —0.8 to 0 millionkm? per decade in March, in
which the distributions of SSP5-8.5 are chiefly [—0.4, 0),
[-0.8, —0.4), and [—0.8, —0.4) million km? per decade dur-
ing 2021-2040, 2041-2060, and 2061-2100, respectively. A
relatively even distribution is shown in September before the
mid-century, while it is concentrated in [—0.4, 0) in the late
century. This indicates that the difference among models is
still great in September before 2060, while the trends are con-
sistent in 2061-2100.
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3.2 Future changes in other sea ice parameters

In addition to the extent and area, thickness, concentration,
volume, and age are important indicators of changes in sea
ice in the future. Figures 4 and 5 show the linear trends of ice
thickness and concentration and the changes in sea ice vol-
ume and age, respectively, under SSP5-85 in 2021-2100. Ice
thickness has a negative trend within the Arctic Archipelago,
in coastal water, and in the sector to the north of the Arc-
tic Archipelago and Greenland in September, while the other
parts will slightly increase in the next 20 years. The trend is
reversed in the Arctic Ocean, and the decreasing area near
the shore will extend to the north in 2041-2060, after which
almost all sea ice will be reduced with an average trend of
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Figure 3. Linear trends and probability distributions (PDs) of Arctic sea ice extent (SIE) in March and September.

—0.22 m per decade in the Arctic. Sea ice concentration will
decrease throughout the rest of this century. The significant
area is to the north of the Arctic Archipelago and Greenland
and the Arctic Basin in September 2021-2040. The extent
will shrink, and the decadal linear rate will decrease until the
second half of the century, when the rate of decrease will be
even and small in the Arctic. The average decadal rates of sea
ice concentration are —12.39 %, —6.26 %, and —0.81 % in
the three stages. Sea ice volume will decrease in both March
and September 2021-2100. The rate of decrease is higher in
March, and sea ice might completely disappear in September
before 2090. Ice age is also a key descriptor of the state of
sea ice cover. Compared to younger ice, older ice tends to
be thicker and more resilient to changes in atmospheric and
oceanic forcing (Richter-Menge et al., 2019). As displayed in
Fig. 5, the oldest ice (>4 years old) currently comprises just
a small fraction in March, and it might eventually disappear
by approximately the mid-century. With the degeneration of
older ice, the extent of the younger ice will increase over a
period, such as 3- to 4-year-old ice in the next 10 years, 2-
to 3-year-old ice before 2035, and 1- to 2-year-old ice before
2050, after which it will degrade into the next younger ice.
First-year ice dominates the sea ice cover in the present and
future. It increases mainly before 2060 and remains stable
until 2090, after which it starts to decrease due to the lack of
supplementation from degraded older ice.

3.3 Future changes in arctic navigability
With the retreat of sea ice, the possibility for navigation is
rising in the Arctic. The opening of passages will be prof-

itable for ocean shipping companies (Chang et al., 2015).
The most likely navigable window is in September. Figure 6

https://doi.org/10.5194/tc-15-5473-2021

shows Arctic accessibility for the OW ships under SSP5-8.5
in September. Panel (a) indicates that the probability of cross-
ing NSR and NWP is low in the next 10 years. The impass-
able areas for NSR are mainly in the East Siberian Sea and
northwestern Laptev Sea, but nearshore waters might be nav-
igable for vessels with shallow drafts. Four crucial straits, the
Vilkitsky Strait, Shokalsky Strait, Dmitry Laptev Strait, and
Sannikov Strait, are accessible for OW ships. NWP is im-
passable in the sectors west of Banks Island and Queen Eliz-
abeth Island, as well as the M’ Clure Strait, Viscount Melville
Sound, Barrow Strait, and Lancaster Strait within the Parry
Channel. All routes provided in the Arctic marine shipping
assessment report (AMSA, 2009) are under restrictions for
OW ships. By the mid-century, both NSR and NWP will
open for OW ships under SSP5-8.5 in September.

The opening of the Arctic passages mainly depends on
the connectivity among grid cells, during which the over-
all navigable potential in a region can be measured by the
percentage of accessible grid cells with total grid cells. Fig-
ure 7 displays the Arctic navigable grid cells for OW ships
and PC6 ships under SSP2-4.5 and SSP5-8.5 in 2021-2030
and 2045-2055. It is the percentage of grid cells in which
INs are greater than 0. The totally navigable percentage for
OW ships is shown as a unimodal curve in both stages, with
the peak in September and the valley in April and March. It
is an irregular curve for PC6 ships with the minimum value
in June. The maximum values are shown in October 2021-
2030, while they will have a range in November and Decem-
ber by the mid-century. Actually, the Arctic would be nav-
igable for PC6 ships from October to December. It is very
strange that an abnormal decrease occurs in September in
2045-2055. The navigable grid cells within every 5° latitude

The Cryosphere, 15, 5473-5482, 2021
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Figure 4. Linear trends of sea ice thickness and concentration under SSP5-85 in September.
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Figure 5. The changes in sea ice volume and age under SSP5-85.

from 65 to 90° N are plotted in Fig. 8 for further study. This
indicates that the abnormal point results from the decrease
within 80-90° N, but the reason is hard to explain. The navi-
gable grid cells are mainly concentrated at 65-75° N for OW
ships in the next 10 years, and they will extend to 80° N by
the mid-century. The central passage might be accessible for
PC6 ships in September and October, and the open window
would be from October to January in 2045-2055. The routes
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of NSR and NWP are mainly distributed in 70-75° N. The
possibility for OW ships crossing two passages is low until
August—October 2045-2055, while it is high for PC6 ships
during October—December 2021-2030, and the open window
would extend to August—January in 2045-2055.
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4 Discussion and concluding remarks

The Arctic warming rate is more than double the global aver-
age, and it has had great impacts on the Arctic and globe (Co-
hen et al., 2020). This paper investigated the future changes
in sea ice and navigability of passages in the Arctic under two
kinds of shared socioeconomic pathways. It provides a vision
of the earth’s future and has great significance for navigation
planning. The following results were found.

1. The changes in sea ice would occur along SSP5-8.5 with

a higher possibility under the current trend. “Ice free”
might appear in September 2060, and sea ice would
completely disappear by the end of the century.

. The retreat of sea ice is more significant in September
before 2060, after which the decline is mainly shown
in March. The decadal rate of sea ice extent will in-
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Figure 7. The percentage of totally navigable grid cells for OW ships and PC6 ships under SSP2-4.5 and SSP5-8.5.

crease under SSP5-8.5 in March, while it will decrease
in September.

The decrease in sea ice thickness will transit from
the Arctic Ocean north of the Arctic Archipelago and
Greenland to the seas along Russia and North America
and will totally decline with an average decadal trend of
—0.22 m in September after 2060. Sea ice concentration
will thoroughly decline with decreasing decadal rates.

Sea ice volume will decrease at a higher decadal rate in
March than in September. The oldest ice might eventu-
ally disappear by approximately the mid-century. First-
year ice dominates the sea ice cover. It increases mainly
before 2060 and remains stable until 2090, after which
it starts to decrease.

The probability for OW ships crossing NSR and NWP
is low in 2021-2030, while it is high in August—October
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Figure 8. The percentage of navigable grid cells for OW ships and PC6 ships under SSP2-4.5 and SSP5-8.5 within different latitudes.

2045-2055, with maximum and minimum navigable
grid cells in September and March, respectively.

The passages along the coast and crossing the Arctic
might open for PC6 ships during October-December
and September—October 2021-2030, respectively, with
maximum navigable grid cells in October. The open
window would extend to August—January and October—
January in 2045-2055, respectively, and the maximum
navigable grid cells have a range in November and De-
cember.

The navigable window for OW ships and PC6 ships along
the NSR were investigated in our previous work (Chen et
al., 2020), but it is insufficient to evaluate Arctic navigability
by a single climate model, even with a high resolution. This
study serves as a reference for future changes in sea ice and
navigability in the Arctic, including NSR, NWP, and cen-
tral passage. However, the uncertainty of the models might
have affected the results and their reliability in this research.
Approximated physical processes and unreal parameters in
models are inevitable problems in the geosciences. Differ-
ences still existed even when the models were filtered by
comparing the historical simulations with the observations
of sea ice extent. The abnormal decrease in navigable area at
high latitudes (80-90° N) in September might be an example.
This is against conventional wisdom, but it could be true. The
uncertainty of the models is expected to decrease in future
prospective research. Different ice types do make a big dif-
ference to ship navigability. For example, for the same sea ice
thickness (SIT) - sea ice concentration (SIC) (e.g., SIT - SIC
= 0.3), pack ice (say SIT = 0.6 m thick and SIC = 50 %)
has a high degree of freedom that level ice (say SIT = 0.3 m
and SIC = 100 %) does not have. Thus, ships are easier to
navigate in broken ice floes (Huang et al., 2020b). ATAM is
unable to clearly distinguish ice types at first, and this might
be a future direction. The percentage of the number of nav-
igable cells (points) was used to measure the navigable po-
tential in a region. However, the percentage of the navigable
area makes a lot more sense because the area of the grid cells

The Cryosphere, 15, 5473-5482, 2021

is not constant in space at a latitude—longitude grid even if it
can be indicated by the percentage of navigable points which
are uniformly distributed at each latitude to a certain extent.
Equidistant projection could be used in the further research.
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