Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4909-2021
https://doi.org/10.5194/tc-15-4909-2021
Research article
 | 
21 Oct 2021
Research article |  | 21 Oct 2021

Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness

Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve

Related authors

Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024,https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023,https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024,https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024,https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024,https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024,https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024,https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary

Cited articles

Andersen, S., Breivik, L. A., Eastwood, S., Godøy, Ø., Lavergne, T., Lind, M., Procires, M., Schyberg, H., and Tonboe, R.: Ocean and Sea Ice SAF, Sea Ice Product Manual, version 3.8, oSI SAF document no. SAF/OSI/met.no/TEC/MA/125, EUMETSAT, Darmstadt, Germany, 2012. a
Armstrong, R. and Brodzik, M.: DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/3EX2U1DV3434, 1994. a
Bi, H., Zhang, Z., Wang, Y., Xu, X., Liang, Y., Huang, J., Liu, Y., and Fu, M.: Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017, The Cryosphere, 13, 1025–1042, https://doi.org/10.5194/tc-13-1025-2019, 2019. a
Blanchard-Wrigglesworth, E., Webster, M. A., Farrell, S. L., and Bitz, C. M.: Reconstruction of snow on Arctic sea ice, J. Geophys. Res.-Oceans, 123, 3588–3602, https://doi.org/10.1002/2017JC013364, 2018. a
Christensen, T., Lasserre, F., Dawson, J., Guy, E., and Pelletier, J.-F.: Adaptation actions for a changing Arctic: perspectives from the Baffin Bay/Davis Strait region, Tech. rep., Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2018. a, b
Download
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.