Articles | Volume 15, issue 9
The Cryosphere, 15, 4281–4313, 2021
https://doi.org/10.5194/tc-15-4281-2021
The Cryosphere, 15, 4281–4313, 2021
https://doi.org/10.5194/tc-15-4281-2021

Research article 07 Sep 2021

Research article | 07 Sep 2021

Southern Ocean polynyas in CMIP6 models

Martin Mohrmann et al.

Related authors

Spaceborne infrared imagery for early detection of Weddell Polynya opening
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021,https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
Airborne mapping of the sub-ice platelet layer under fast ice in McMurdo Sound, Antarctica
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021,https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021,https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020,https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020,https://doi.org/10.5194/tc-14-2775-2020, 2020
Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020,https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary

Cited articles

Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., Dunne, J. P., Griffies, S. M., Hallberg, R., Harrison, M. J., Held, I. M., Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S., Liang, Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B., Zadeh, N., and Zhang, R.: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features, J. Adv. Model. Earth Sy., 11, 3167–3211, 2019. a, b
Aguiar, W., Mata, M. M., and Kerr, R.: On deep convection events and Antarctic Bottom Water formation in ocean reanalysis products, Ocean Sci., 13, 851–872, https://doi.org/10.5194/os-13-851-2017, 2017. a
Andreas, E. L. and Ackley, S. F.: On the differences in ablation seasons of Arctic and Antarctic sea ice, J. Atmos. Sci., 39, 440–447, 1982. a
Arbetter, T. E., Lynch, A. H., and Bailey, D. A.: Relationship between synoptic forcing and polynya formation in the Cosmonaut Sea: 1. Polynya climatology, J. Geophys. Res.-Oceans, 109, C04022, https://doi.org/10.1029/2003JC001837, 2004. a
Arrigo, K. R. and Van Dijken, G. L.: Phytoplankton dynamics within 37 Antarctic coastal polynya systems, J. Geophys. Res.-Oceans, 108, 3271, https://doi.org/10.1029/2002JC001739, 2003. a
Download
Short summary
Polynyas are large open-water areas within the sea ice. We developed a method to estimate their area, distribution and frequency for the Southern Ocean in climate models and observations. All models have polynyas along the coast but few do so in the open ocean, in contrast to observations. We examine potential atmospheric and oceanic drivers of open-water polynyas and discuss recently implemented schemes that may have improved some models' polynya representation.