Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-325-2021
https://doi.org/10.5194/tc-15-325-2021
Research article
 | 
26 Jan 2021
Research article |  | 26 Jan 2021

Year-round impact of winter sea ice thickness observations on seasonal forecasts

Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart

Related authors

AIFS 1.1.0: An update to ECMWF's machine-learned weather forecast model AIFS
Gabriel Moldovan, Ewan Pinnington, Ana Prieto Nemesio, Simon Lang, Zied Ben Bouallègue, Jesper Dramsch, Mihai Alexe, Mario Santa Cruz, Sara Hahner, Harrison Cook, Helen Theissen, Mariana Clare, Cathal O'Brien, Jan Polster, Linus Magnusson, Gert Mertes, Florian Pinault, Baudouin Raoult, Patricia de Rosnay, Richard Forbes, and Matthew Chantry
EGUsphere, https://doi.org/10.5194/egusphere-2025-4716,https://doi.org/10.5194/egusphere-2025-4716, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Learning predictable and informative dynamical drivers of extreme precipitation using variational autoencoders
Fiona R. Spuler, Marlene Kretschmer, Magdalena Alonso Balmaseda, Yevgeniya Kovalchuk, and Theodore G. Shepherd
Weather Clim. Dynam., 6, 995–1014, https://doi.org/10.5194/wcd-6-995-2025,https://doi.org/10.5194/wcd-6-995-2025, 2025
Short summary
Sea ice data assimilation in ORAS6
Philip Browne, Eric de Boisseson, Sarah Keeley, Charles Pelletier, and Hao Zuo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3991,https://doi.org/10.5194/egusphere-2025-3991, 2025
Short summary
Subpolar Atlantic meridional heat transports from OSNAP and ocean reanalyses – a comparison
Susanna Winkelbauer, Isabella Winterer, Michael Mayer, Yao Fu, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-4093,https://doi.org/10.5194/egusphere-2025-4093, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Assessing subseasonal forecast skill for use in predicting US coastal inundation risk
John R. Albers, Matthew Newman, Magdalena A. Balmaseda, William Sweet, Yan Wang, and Tongtong Xu
Ocean Sci., 21, 1761–1785, https://doi.org/10.5194/os-21-1761-2025,https://doi.org/10.5194/os-21-1761-2025, 2025
Short summary

Cited articles

Allard, R. A., Farrell, S. L., Hebert, D. A., Johnston, W. F., Li, L., Kurtz, N. T., Phelps, M. W., Posey, P. G., Tilling, R., Ridout, A., and Wallcraft, A. J.: Utilizing CryoSat-2 sea ice thickness to initialize a coupled ice-ocean modeling system, Adv. Space Res., 62, 1265–1280, 2018. a
Balan-Sarojini, B., Tietsche, S., Mayer, M., Balmaseda, M., and Zuo, H.: Towards improved sea ice initialization and forecasting with the IFS, https://doi.org/10.21957/mt6m6rpwt, 2019. a, b
Balmaseda, M., Hernandez, F., Storto, A., Palmer, M., Alves, O., Shi, L., Smith, G., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y.-S., Chepurin, G., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K., Tang, Y., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.-F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., and Gaillard, F.: The Ocean Reanalyses Intercomparison Project (ORA-IP), J. Oper. Oceanogr., 8, s80–s97, https://doi.org/10.1080/1755876X.2015.1022329, 2015. a
Balmaseda, M. A., Ferranti, L., Molteni, F., and Palmer, T. N.: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions, Q. J. Roy. Meteor. Soc., 136, 1655–1664, https://doi.org/10.1002/qj.661, 2010. a
Batrak, Y. and Müller, M.: On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10, 1–8, 2019. a
Download
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Share