Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Horst Machguth
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Marlene Kronenberg
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Ward van Pelt
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Manuela Bassi
Department of Forecasting Systems, Regional Agency for Environmental Protection of Piedmont, Turin, Italy
Martin Hoelzle
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Related authors
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2892, https://doi.org/10.5194/egusphere-2024-2892, 2024
Short summary
Short summary
Inside the highest glaciers of the Alps lies an invaluable archive of data revealing the Earth's historic climate. However, as the atmosphere warms due to climate change, so does the glaciers' internal temperature – threatening the future longevity of these records. Using our customised Python model, validated by on-site measurements, we show how a doubling in surface melt has caused a warming of 1.5 °C in the past 21 years and explore the challenges of modelling in complex mountainous terrain.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Marcus Gastaldello, Enrico Mattea, Martin Hoelzle, and Horst Machguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2892, https://doi.org/10.5194/egusphere-2024-2892, 2024
Short summary
Short summary
Inside the highest glaciers of the Alps lies an invaluable archive of data revealing the Earth's historic climate. However, as the atmosphere warms due to climate change, so does the glaciers' internal temperature – threatening the future longevity of these records. Using our customised Python model, validated by on-site measurements, we show how a doubling in surface melt has caused a warming of 1.5 °C in the past 21 years and explore the challenges of modelling in complex mountainous terrain.
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Ward van Pelt and Thomas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2024-1525, https://doi.org/10.5194/egusphere-2024-1525, 2024
Short summary
Short summary
Accurate information on the ice thickness of Svalbard’s glaciers is important for assessing the contribution to sea level rise in a present and future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations, to infer basal conditions. We present and analyze the new bed and thickness maps, quantify the ice volume (6,800 km3), and compare against radar data and previous studies.
Tim van den Akker, Ward van Pelt, Rickard Petterson, and Veijo A. Pohjola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1345, https://doi.org/10.5194/egusphere-2024-1345, 2024
Short summary
Short summary
Liquid water can persist within old snow on glaciers and ice caps, if it can percolate into it before it refreezes. Snow is a good insulator, and snow is porous where the percolated water can be stored. If this happens, the water piles up and forms a groundwater-like system. Here, we show observations of such a groundwater-like system found in Svalbard. We demonstrate that it behaves like a groundwater system, and use that to model the development of the water table from 1957 until present day.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Dominik Amschwand, Seraina Tschan, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, Lukas Aschwanden, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-844, https://doi.org/10.5194/egusphere-2024-844, 2024
Short summary
Short summary
Meltwater from rock glaciers, landforms of debris and ice, has gained attention in dry mountain regions. We estimated how much ice melts in Murtèl rock glacier (Swiss Alps) using below-ground heat flow measurements and observations of the rising and falling ground ice table. We found seasonal aggradation and melt of 150–300 mm w.e. or up to 30 % of the yearly precipitation. The ice, largely sourced from refreezing snowmelt, melts in dry summer periods but cannot increase the total yearly runoff.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Dominik Amschwand, Jonas Wicky, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
EGUsphere, https://doi.org/10.5194/egusphere-2024-172, https://doi.org/10.5194/egusphere-2024-172, 2024
Short summary
Short summary
Rock glaciers are comparatively climate-resilient coarse-debris permafrost landforms. We estimate the energy budget of the seasonally thawing active layer (AL) of rock glacier Murtèl (Swiss Alps) based on a novel sub-surface sensor array. In the coarse-blocky AL during the thaw season, heat is transferred by thermal radiation and air convection. The ground heat flux is largely used to melt ground ice in the AL that protects to some degree the permafrost body beneath.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197, https://doi.org/10.5194/tc-2020-197, 2020
Revised manuscript not accepted
Short summary
Short summary
Freshwater discharge from tidewater glaciers influences fjord circulation and fjord ecosystem. Glacier hydrology plays crucial role in transporting water underneath glacier ice. We investigated hydrology beneath the tidewater glaciers of Kongsfjord basin in Northwest Svalbard and found that subglacial water flow differs substantially from surface flow of glacier ice. Furthermore, we derived freshwater discharge time-series from all the glaciers to the fjord.
Ward van Pelt, Veijo Pohjola, Rickard Pettersson, Sergey Marchenko, Jack Kohler, Bartłomiej Luks, Jon Ove Hagen, Thomas V. Schuler, Thorben Dunse, Brice Noël, and Carleen Reijmer
The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, https://doi.org/10.5194/tc-13-2259-2019, 2019
Short summary
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
Sergey Marchenko, Gong Cheng, Per Lötstedt, Veijo Pohjola, Rickard Pettersson, Ward van Pelt, and Carleen Reijmer
The Cryosphere, 13, 1843–1859, https://doi.org/10.5194/tc-13-1843-2019, https://doi.org/10.5194/tc-13-1843-2019, 2019
Short summary
Short summary
Thermal conductivity (k) of firn at Lomonosovfonna, Svalbard, is estimated using measured temperature evolution and density. The optimized k values (0.2–1.6 W (m K)−1) increase downwards and over time and are most sensitive to systematic errors in measured temperature values and their depths, particularly in the lower part of the profile. Compared to the density-based parameterizations, derived k values are consistently larger, suggesting a faster conductive heat exchange in firn.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Kathrin Naegeli, Matthias Huss, and Martin Hoelzle
The Cryosphere, 13, 397–412, https://doi.org/10.5194/tc-13-397-2019, https://doi.org/10.5194/tc-13-397-2019, 2019
Short summary
Short summary
The paper investigates the temporal changes of bare-ice glacier surface albedo in the Swiss Alps between 1999 and 2016 from a regional to local scale using satellite data. Significant negative trends were found in the lowermost elevations and margins of the ablation zones. Although significant changes of glacier ice albedo are only present over a limited area, we emphasize that albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future.
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018, https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Short summary
As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the flow of ice of the Rhine glacier at the Last Glacial Maximum to determine conditions at the ice–bed interface. Results indicate that portions of the ice lobes were at the melting temperature and ice was sliding, two conditions necessary for erosion by glacier. Conditions at the bed of the ice lobes were affected by climate and also by topography.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Solveig H. Winsvold, Andreas Kääb, Christopher Nuth, Liss M. Andreassen, Ward J. J. van Pelt, and Thomas Schellenberger
The Cryosphere, 12, 867–890, https://doi.org/10.5194/tc-12-867-2018, https://doi.org/10.5194/tc-12-867-2018, 2018
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Penelope How, Douglas I. Benn, Nicholas R. J. Hulton, Bryn Hubbard, Adrian Luckman, Heïdi Sevestre, Ward J. J. van Pelt, Katrin Lindbäck, Jack Kohler, and Wim Boot
The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, https://doi.org/10.5194/tc-11-2691-2017, 2017
Short summary
Short summary
This study provides valuable insight into subglacial hydrology and dynamics at tidewater glaciers, which remains a poorly understood area of glaciology. It is a unique study because of the wealth of information provided by simultaneous observations of glacier hydrology at Kronebreen, a tidewater glacier in Svalbard. All these elements build a strong conceptual picture of the glacier's hydrological regime over the 2014 melt season.
Vassiliy Kapitsa, Maria Shahgedanova, Horst Machguth, Igor Severskiy, and Akhmetkal Medeu
Nat. Hazards Earth Syst. Sci., 17, 1837–1856, https://doi.org/10.5194/nhess-17-1837-2017, https://doi.org/10.5194/nhess-17-1837-2017, 2017
Short summary
Short summary
Changes in lake count and area in the region of Djungarskiy Alatau were assessed, showing that both increased by 6 % in 2002–2014 due to glacier melt. A total of 50 lakes were identified as potentially dangerous. GlabTop2 was used to simulate location and size of overdeepenings in the subglacier beds which present sites where lakes can develop in the future. The model predicted 67 % of lakes would form in the area de-glacierized in 2002–2014, correctly proving a useful tool in hazard management.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Charlotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée
The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, https://doi.org/10.5194/tc-11-1015-2017, 2017
Short summary
Short summary
This paper shows that the surface melt increase over the Greenland ice sheet since the end of the 1990s has been unprecedented, with respect to the last 120 years, using a regional climate model. These simulations also suggest an increase of the snowfall accumulation through the last century before a surface mass decrease in the 2000s. Such a mass gain could have impacted the ice sheet's dynamic stability and could explain the recent observed increase of the glaciers' velocity.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Mauro Fischer, Matthias Huss, Mario Kummert, and Martin Hoelzle
The Cryosphere, 10, 1279–1295, https://doi.org/10.5194/tc-10-1279-2016, https://doi.org/10.5194/tc-10-1279-2016, 2016
Short summary
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
P. Greenwood, M. Hoelzle, and N. J. Kuhn
Geogr. Helv., 70, 311–313, https://doi.org/10.5194/gh-70-311-2015, https://doi.org/10.5194/gh-70-311-2015, 2015
Short summary
Short summary
Editorial introducing the special issue of Geographica Helvetica: Mapping, Measuring and Modeling in Geomorphology.
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, https://doi.org/10.5194/tc-9-525-2015, 2015
M. Schaefer, H. Machguth, M. Falvey, G. Casassa, and E. Rignot
The Cryosphere, 9, 25–35, https://doi.org/10.5194/tc-9-25-2015, https://doi.org/10.5194/tc-9-25-2015, 2015
Short summary
Short summary
We use a meteorological-glaciological multi-model approach to quantify, for the first time, melt and accumulation of snow on the Southern Patagonia Icefield (SPI). We were able to reproduce the high measured accumulation of snow of up to 15.4 m water equivalent per year as well as the high measured ablation of up to 11 m water equivalent per year. Mass losses of the SPI due to calving of icebergs strongly increased from 1975-2000 to 2000-2011 and were higher than losses due to surface melt.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
M. Scherler, S. Schneider, M. Hoelzle, and C. Hauck
Earth Surf. Dynam., 2, 141–154, https://doi.org/10.5194/esurf-2-141-2014, https://doi.org/10.5194/esurf-2-141-2014, 2014
S. Schneider, S. Daengeli, C. Hauck, and M. Hoelzle
Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, https://doi.org/10.5194/gh-68-265-2013, 2013
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
M. Hoelzle and E. Reynard
Geogr. Helv., 68, 225–226, https://doi.org/10.5194/gh-68-225-2013, https://doi.org/10.5194/gh-68-225-2013, 2013
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine
The Cryosphere, 7, 987–1006, https://doi.org/10.5194/tc-7-987-2013, https://doi.org/10.5194/tc-7-987-2013, 2013
P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul
The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, https://doi.org/10.5194/tc-6-1483-2012, 2012
Related subject area
Discipline: Glaciers | Subject: Energy Balance Obs/Modelling
Brief Communication: Accurate and autonomous snow water equivalent measurements using a cosmic ray sensor on a Himalayan glacier
Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Modeling of surface energy balance for Icelandic glaciers using remote-sensing albedo
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay
The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica
Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry
Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada
Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya
SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice
Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains
Surface energy fluxes on Chilean glaciers: measurements and models
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Navaraj Pokhrel, Patrick Wagnon, Fanny Brun, Arbindra Khadka, Tom Matthews, Audrey Goutard, Dibas Shrestha, Baker Perry, and Marion Réveillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1760, https://doi.org/10.5194/egusphere-2024-1760, 2024
Short summary
Short summary
We studied snow processes in the accumulation area of Mera Glacier (Central Himalaya, Nepal) by deploying a cosmic ray counting sensor that allows to track the evolution of the snow water equivalent. We suspect significant surface melting, water percolation and refreezing within the snowpack, that might be missed by traditional mass balance surveys.
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Short summary
Rock glaciers are coarse-debris permafrost landforms that are comparatively climate resilient. We estimate the surface energy balance of rock glacier Murtèl (Swiss Alps) based on a large surface and sub-surface sensor array. During the thaw seasons 2021 and 2022, 90 % of the net radiation was exported via turbulent heat fluxes and only 10 % was transmitted towards the ground ice table. However, early snowmelt and droughts make these permafrost landforms vulnerable to climate warming.
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024, https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Short summary
Our study increases our confidence in using reanalysis data for reconstructions of past glacier melt and in using dynamical downscaling for long-term simulations from global climate models to project glacier melt. We find that the surface energy balance model, forced with reanalysis and dynamically downscaled reanalysis data, yields <10 % difference in the modeled total melt energy when compared to the same model being forced with observations at our glacier sites in western Canada.
Andri Gunnarsson, Sigurdur M. Gardarsson, and Finnur Pálsson
The Cryosphere, 17, 3955–3986, https://doi.org/10.5194/tc-17-3955-2023, https://doi.org/10.5194/tc-17-3955-2023, 2023
Short summary
Short summary
A model was developed with the possibility of utilizing satellite-derived daily surface albedo driven by high-resolution climate data to estimate the surface energy balance (SEB) for all Icelandic glaciers for the period 2000–2021.
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere, 16, 3071–3099, https://doi.org/10.5194/tc-16-3071-2022, https://doi.org/10.5194/tc-16-3071-2022, 2022
Short summary
Short summary
This study implements a physically based, distributed glacier mass balance model in a context of sparse direct observations. Carefully constraining model parameters with ancillary data allowed for accurately reconstructing the mass balance of Saskatchewan Glacier over a 37-year period. We show that the mass balance sensitivity to warming is dominated by increased melting and that changes in glacier albedo and air humidity are the leading causes of increased glacier melt under warming scenarios.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Shawn J. Marshall and Kristina Miller
The Cryosphere, 14, 3249–3267, https://doi.org/10.5194/tc-14-3249-2020, https://doi.org/10.5194/tc-14-3249-2020, 2020
Short summary
Short summary
Surface-albedo measurements from 2002 to 2017 from Haig Glacier in the Canadian Rockies provide no evidence of long-term trends (i.e., the glacier does not appear to be darkening), but there are large variations in albedo over the melt season and from year to year. The glacier ice is exceptionally dark in association with forest fire fallout but is effectively cleansed by meltwater or rainfall. Summer snowfall plays an important role in refreshing the glacier surface and reducing summer melt.
Marius Schaefer, Duilio Fonseca-Gallardo, David Farías-Barahona, and Gino Casassa
The Cryosphere, 14, 2545–2565, https://doi.org/10.5194/tc-14-2545-2020, https://doi.org/10.5194/tc-14-2545-2020, 2020
Short summary
Short summary
Chile hosts glaciers in a large range of latitudes and climates. To project future ice extent, a sound quantification of the energy exchange between atmosphere and glaciers is needed. We present new data for six Chilean glaciers belonging to three glaciological zones. In the Central Andes, the main energy source for glacier melt is the incoming solar radiation, while in southern Patagonia heat provided by the mild and humid air is also important. Total melt rates are higher in Patagonia.
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Short summary
Drivers controlling melt of debris-covered glaciers are largely unknown. With a 3D turbulence-resolving model the impact of surface properties of debris on micrometeorological variables and the conductive heat flux is shown. Also, we show ice cliffs are local melt hot spots and that turbulent fluxes and local heat advection amplify spatial heterogeneity on the surface.This work is important for glacier mass balance modelling and for the understanding of the evolution of debris-covered glaciers.
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Eleanor A. Bash and Brian J. Moorman
The Cryosphere, 14, 549–563, https://doi.org/10.5194/tc-14-549-2020, https://doi.org/10.5194/tc-14-549-2020, 2020
Short summary
Short summary
High-resolution measurements from unmanned aerial vehicle (UAV) imagery allowed for examination of glacier melt model performance in detail at Fountain Glacier. This work capitalized on distributed measurements at 10 cm resolution to look at the spatial distribution of model errors in the ablation zone. Although the model agreed with measurements on average, strong correlation was found with surface water. The results highlight the contribution of surface water flow to melt at this location.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018, https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary
Short summary
We apply a framework to compare and objectively accept or reject competing melt and run-off process models. We found no acceptable models. Furthermore, increasing model complexity does not guarantee better predictions. The results highlight model selection uncertainty and the need for rigorous frameworks to identify deficiencies in competing models. The application of this approach in the future will help to better quantify model prediction uncertainty and develop improved process models.
Cited articles
Alean, J., Haeberli, W., and Schädler, B.: Snow accumulation, firn temperature
and solar radiation in the area of the Colle Gnifetti core drilling site
(Monte Rosa, Swiss Alps): distribution patterns and
interrelationships, Zeitschrift für Gletscherkunde und Glazialgeologie, 19,
131–147, 1983. a, b, c
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.:
In situ measurements of Antarctic snow compaction compared with predictions
of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. a
Auer, I., Böhm, R., and Schöner, W.: Chapter 3: Instrumental Climate, in:
Final report of EU-rtd-project ALPCLIM, Zentralanstalt für Meteorologie
und Geodynamik, Vienna, Austria,
available at: http://www.zamg.ac.at/histalp/download/abstract/Auer-etal-2001c-F.pdf (last access: 6 July 2021),
2001. a
Barbante, C., Schwikowski, M., Döring, T., Gäggeler, H. W., Schotterer, U.,
Tobler, L., Van de Velde, K., Ferrari, C., Cozzi, G., Turetta, A., Rosman,
K., Bolshov, M., Capodaglio, G., Cescon, P., and Boutron, C.: Historical
Record of European Emissions of Heavy Metals to the Atmosphere
Since the 1650s from Alpine Snow/Ice Cores Drilled near Monte
Rosa, Environ. Sci. Technol., 38, 4085–4090,
https://doi.org/10.1021/es049759r, 2004. a, b
Beck, N., Wagenbach, D., and Münnich, K. O.: Laboratory experiments on the
formation of solar radiation induced melt layers in dry snow, Zeitschrift
für Gletscherkunde und Glazialgeologie, 24, 31–40, 1988. a
Bohleber, P., Erhardt, T., Spaulding, N., Hoffmann, H., Fischer, H., and Mayewski, P.: Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium, Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, 2018. a, b, c, d
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs,
P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke,
S.: Towards a high-resolution regional reanalysis for the European CORDEX
domain: High-Resolution Regional Reanalysis for the European
CORDEX Domain, Q. J. Roy. Meteor. Soc.,
141, 1–15, https://doi.org/10.1002/qj.2486, 2015. a
Bougamont, M., Bamber, J. L., and Greuell, W.: A surface mass balance model for
the Greenland Ice Sheet, J. Geophys. Res.-Earth
Surf., 110, F04018, https://doi.org/10.1029/2005JF000348, 2005. a, b, c, d
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization
of aerodynamic roughness length variations at Haut Glacier d'Arolla,
Switzerland, J. Glaciol., 52, 281–297, https://doi.org/10.3189/172756506781828746,
2006. a, b
Calonne, N., Milliancourt, L., Burr, A., Philip, A., Martin, C. L., Flin, F.,
and Geindreau, C.: Thermal Conductivity of Snow, Firn, and Porous
Ice From 3‐D Image‐Based Computations, Geophys. Res.
Lett., 46, 11, https://doi.org/10.1029/2019GL085228, 2019. a, b, c
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM
Precipitation by Quantile Mapping: How Well Do Methods
Preserve Changes in Quantiles and Extremes?, J. Climate, 28,
6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a
Das, S. B. and Alley, R. B.: Characterization and formation of melt layers in
polar snow: observations and experiments from West Antarctica, J.
Glaciol., 51, 307–312, https://doi.org/10.3189/172756505781829395, 2005. a, b
Essery, R. and Etchevers, P.: Parameter sensitivity in simulations of snowmelt,
J. Geophys. Res., 109, D20111, https://doi.org/10.1029/2004JD005036, 2004. a
Feigenwinter, I., Kotlarski, S., Casanueva, A., Fischer, A., Schwierz, C., and
Liniger, M.: Exploring quantile mapping as a tool to produce user-tailored
climate scenarios for Switzerland, Tech. Rep. 270, MeteoSwiss, available at: https://www.meteoschweiz.admin.ch/content/dam/meteoswiss/en/service-und-publikationen/publikationen/doc/MeteoSchweiz_Fachbericht_270_final.pdf
(last access: 6 July 2021), 2018. a
Frank, C. W., Wahl, S., Keller, J. D., Pospichal, B., Hense, A., and Crewell,
S.: Bias correction of a novel European reanalysis data set for solar
energy applications, Solar Energ., 164, 12–24,
https://doi.org/10.1016/j.solener.2018.02.012, 2018. a
Gabrieli, J., Cozzi, G., Vallelonga, P., Schwikowski, M., Sigl, M., Eickenberg,
J., Wacker, L., Boutron, C., Gäggeler, H., Cescon, P., and Barbante, C.:
Contamination of Alpine snow and ice at Colle Gnifetti,
Swiss/Italian Alps, from nuclear weapons tests, Atmos.
Environ., 45, 587–593, https://doi.org/10.1016/j.atmosenv.2010.10.039, 2011. a
Gabrielli, P., Carturan, L., Gabrieli, J., Dinale, R., Krainer, K., Hausmann,
H., Davis, M., Zagorodnov, V., Seppi, R., Barbante, C., Dalla Fontana, G.,
and Thompson, L.: Atmospheric warming threatens the untapped glacial archive
of Ortles mountain, South Tyrol, J. Glaciol., 56, 843–853,
https://doi.org/10.3189/002214310794457263, 2010. a
Gilbert, A. and Vincent, C.: Atmospheric temperature changes over the
20th century at very high elevations in the European Alps
from englacial temperatures: EUROPEAN ALPS AIR TEMPERATURE CHANGES,
Geophys. Res. Lett., 40, 2102–2108, https://doi.org/10.1002/grl.50401, 2013. a
Gilbert, A., Wagnon, P., Vincent, C., Ginot, P., and Funk, M.: Atmospheric
warming at a high-elevation tropical site revealed by englacial temperatures
at Illimani, Bolivia (6340 m above sea level, 16∘ S, 67∘ W), J.
Geophys. Res., 115, D10109, https://doi.org/10.1029/2009JD012961, 2010. a
Gilbert, A., Gagliardini, O., Vincent, C., and Wagnon, P.: A 3-D thermal
regime model suitable for cold accumulation zones of polythermal mountain
glaciers: A 3-D thermal regime model for glaciers, J. Geophys.
Res.-Earth Surf., 119, 1876–1893, https://doi.org/10.1002/2014JF003199,
2014a. a, b, c
Gilbert, A., Vincent, C., Six, D., Wagnon, P., Piard, L., and Ginot, P.: Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach, The Cryosphere, 8, 689–703, https://doi.org/10.5194/tc-8-689-2014, 2014b. a, b, c, d, e
Gilbert, A., Vincent, C., Gagliardini, O., Krug, J., and Berthier, E.:
Assessment of thermal change in cold avalanching glaciers in relation to
climate warming, Geophys. Res. Lett., 42, 6382–6390,
https://doi.org/10.1002/2015GL064838, 2015. a
GLAMOS: The Swiss Glaciers 2013/14 and 2014/15 Glaciological Report
No. 135/136, Tech. rep., Cryospheric Commission (EKK) of the Swiss Academy
of Sciences (SCNAT); Laboratory of Hydraulics, Hydrology and Glaciology
(VAW), Swiss Federal Institute of Technology Zurich (ETH Zurich),
https://doi.org/10.18752/GLREP_135-136, 2017. a, b
Greuell, W. and Konzelmann, T.: Numerical modelling of the energy balance and
the englacial temperature of the Greenland Ice Sheet. Calculations
for the ETH-Camp location (West Greenland, 1155 m a.s.l.), Global Planet. Change, 9, 91–114, https://doi.org/10.1016/0921-8181(94)90010-8, 1994. a
Greuell, W., Knap, W. H., and Smeets, P. C.: Elevational changes in
meteorological variables along a midlatitude glacier during summer, J. Geophys. Res.-Atmos., 102, 25941–25954,
https://doi.org/10.1029/97JD02083, 1997. a, b, c, d
Gruber, S., King, L., Kohl, T., Herz, T., Haeberli, W., and Hoelzle, M.:
Interpretation of geothermal profiles perturbed by topography: the alpine
permafrost boreholes at Stockhorn Plateau, Switzerland, Permafrost Perigl. Process., 15, 349–357, https://doi.org/10.1002/ppp.503, 2004. a
Haeberli, W. and Beniston, M.: Climate Change and Its Impacts on
Glaciers and Permafrost in the Alps, Ambio, 27, 258–265, 1998. a
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.:
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566, 2012. a
Heilig, A., Eisen, O., MacFerrin, M., Tedesco, M., and Fettweis, X.: Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling, The Cryosphere, 12, 1851–1866, https://doi.org/10.5194/tc-12-1851-2018, 2018. a
Illangasekare, T. H., Walter, R. J., Meier, M. F., and Pfeffer, W. T.: Modeling
of meltwater infiltration in subfreezing snow, Water Resour. Res., 26,
1001–1012, https://doi.org/10.1029/WR026i005p01001, 1990. a
Jenk, T. M., Szidat, S., Schwikowski, M., Gäggeler, H. W., Brütsch, S., Wacker, L., Synal, H.-A., and Saurer, M.: Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940), Atmos. Chem. Phys., 6, 5381–5390, https://doi.org/10.5194/acp-6-5381-2006, 2006. a
Jenk, T. M., Szidat, S., Bolius, D., Sigl, M., Gäggeler, H. W., Wacker, L.,
Ruff, M., Barbante, C., Boutron, C. F., and Schwikowski, M.: A novel
radiocarbon dating technique applied to an ice core from the Alps
indicating late Pleistocene ages, J. Geophys. Res., 114, D14305,
https://doi.org/10.1029/2009JD011860, 2009. a
Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T., and Kumakura, T.:
Nondestructive three-dimensional observations of flow finger and lateral flow
development in dry snow using magnetic resonance imaging, Cold Reg.
Sci. Technol., 170, 102956,
https://doi.org/10.1016/j.coldregions.2019.102956, 2020. a
Klok, E. and Oerlemans, J.: Model study of the spatial distribution of the
energy and mass balance of Morteratschgletscher, Switzerland, J.
Glaciol., 48, 505–518, https://doi.org/10.3189/172756502781831133, 2002. a, b
Koerner, R.: The Mass Balance of the Devon Island Ice Cap,
Northwest Territories, Canada, 1961–66, J. Glaciol., 9,
325–336, https://doi.org/10.3189/S0022143000022863, 1970. a
Konrad, H., Bohleber, P., Wagenbach, D., Vincent, C., and Eisen, O.:
Determining the age distribution of Colle Gnifetti, Monte Rosa,
Swiss Alps, by combining ice cores, ground-penetrating radar and a simple
flow model, J. Glaciol., 59, 179–189, https://doi.org/10.3189/2013JoG12J072,
2013. a, b
Konzelmann, T., Vandewal, R., Greuell, W., Bintanja, R., Henneken, E., and
Abeouchi, A.: Parameterization of global and longwave incoming radiation for
the Greenland Ice Sheet, Global Planet. Change, 9, 143–164,
https://doi.org/10.1016/0921-8181(94)90013-2, 1994. a
Koppal, S. J.: Lambertian Reflectance, pp. 441–443, Springer US, Boston, MA,
https://doi.org/10.1007/978-0-387-31439-6_534, 2014. a
Kuhn, M.: Micro-Meteorological Conditions for Snow Melt, J.
Glaciol., 33, 24–26, https://doi.org/10.3189/S002214300000530X, 1987. a
Kuipers Munneke, P., M. Ligtenberg, S. R., van den Broeke, M. R., van Angelen,
J. H., and Forster, R. R.: Explaining the presence of perennial liquid water
bodies in the firn of the Greenland Ice Sheet, Geophys. Res. Lett., 41,
476–483, https://doi.org/10.1002/2013GL058389, 2014. a
Legrand, M., Preunkert, S., May, B., Guilhermet, J., Hoffman, H., and
Wagenbach, D.: Major 20th century changes of the content and chemical
speciation of organic carbon archived in Alpine ice cores: Implications
for the long-term change of organic aerosol over Europe, J. Geophys. Res.-Atmos., 118, 3879–3890, https://doi.org/10.1002/jgrd.50202, 2013. a
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011. a, b
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008. a
Lüthi, M. P.: Rheology of cold firn and dynamics of a polythermal ice stream:
Studies on Colle Gnifetti and Jakobshavns Isbræ, PhD thesis, ETH
Zürich, https://doi.org/10.3929/ethz-a-003884174, 2000. a, b
Marchenko, S., van Pelt, W. J. J., Claremar, B., Pohjola, V., Pettersson, R.,
Machguth, H., and Reijmer, C.: Parameterizing Deep Water Percolation
Improves Subsurface Temperature Simulations by a Multilayer Firn
Model, Front. Earth Sci., 5, 16, https://doi.org/10.3389/feart.2017.00016, 2017. a, b, c, d, e, f
Masson-Delmotte, V., Dreyfus, G., Braconnot, P., Johnsen, S., Jouzel, J., Kageyama, M., Landais, A., Loutre, M.-F., Nouet, J., Parrenin, F., Raynaud, D., Stenni, B., and Tuenter, E.: Past temperature reconstructions from deep ice cores: relevance for future climate change, Clim. Past, 2, 145–165, https://doi.org/10.5194/cp-2-145-2006, 2006. a
Mattea, E.: Measuring and modelling changes in the firn at Colle Gnifetti,
4400 m a.s.l., Swiss Alps, Master's thesis, University of Fribourg,
available at: https://bigweb.unifr.ch/Science/Geosciences/GeographyTechnical/Secretary/Pub/Publications/Geography/SelectedBachelorMasterThesis/2020/Mattea_E._(2020)_M_Measuring_modelling_changes_Colle_Gnifetti.pdf (last access: 6 July 2021),
2020. a, b, c
Mattea, E., Machguth, H., Kronenberg, M., van Pelt, W., Bassi, M., and Hoelzle, M.: MatteaE/ebfm_colle_gnifetti: Final version (Version 2.0) [code], Zenodo, https://doi.org/10.5281/zenodo.4913487, 2021. a
MeteoAM: Servizio Meteorologico dell'Aeronautica Militare - Disponibilità
dei dati, available at: http://www.meteoam.it/dati_in_tempo_reale, last
access: December 2020. a
More, A. F., Spaulding, N. E., Bohleber, P., Handley, M. J., Hoffmann, H.,
Korotkikh, E. V., Kurbatov, A. V., Loveluck, C. P., Sneed, S. B., McCormick,
M., and Mayewski, P. A.: Next‐generation ice core technology reveals true
minimum natural levels of lead (Pb) in the atmosphere: Insights from the
Black Death, GeoHealth, 1, 211–219, https://doi.org/10.1002/2017GH000064, 2017. a
Nakićenović, N. (Ed.): Special report on emissions scenarios: a special report
of Working Group III of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Cambridge, New York, oCLC:
ocm44652561, 2000. a
New, M., Hulme, M., and Jones, P.: Representing Twentieth-Century
Space–Time Climate Variability. Part II: Development of
1901–96 Monthly Grids of Terrestrial Surface Climate, J.
Climate, 13, 2217–2238,
https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2, 2000. a
Oerlemans, J. and Grisogono, B.: Glacier winds and parameterisation of the
related surface heat fluxes, Tellus A, 54, 440–452,
https://doi.org/10.1034/j.1600-0870.2002.201398.x, 2002. a, b
Oerlemans, J. and Knap, W. H.: A 1 year record of global radiation and albedo
in the ablation zone of Morteratschgletscher, Switzerland, J.
Glaciol., 44, 231–238, https://doi.org/10.1017/S0022143000002574, 1998. a
Preunkert, S., Wagenbach, D., Legrand, M., and Vincent, C.: Col du Dôme
(Mt Blanc Massif, French Alps) suitability for ice-core studies in
relation with past atmospheric chemistry over Europe, Tellus B, 52, 993–1012, https://doi.org/10.3402/tellusb.v52i3.17081,
2000. a
Preunkert, S., Legrand, M., and Wagenbach, D.: Sulfate trends in a Col du
Dôme (French Alps) ice core: A record of anthropogenic sulfate
levels in the European midtroposphere over the twentieth century, J.
Geophys. Res., 106, 31991–32004, https://doi.org/10.1029/2001JD000792, 2001. a
Quéno, L., Fierz, C., van Herwijnen, A., Longridge, D., and Wever, N.: Deep ice layer formation in an alpine snowpack: monitoring and modeling, The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020, 2020. a
Regione Piemonte: RIPRESA AEREA ICE 2009-2011 – DTM 5,
available at: http://www.geoportale.piemonte.it/geonetworkrp/srv/ita/metadata.show?id=2552&currTab=rndt
(last access: November 2020), 2011. a
Schneider, T. and Jansson, P.: Internal accumulation in firn and its
significance for the mass balance of Storglaciären, Sweden, J. Glaciol.,
50, 25–34, https://doi.org/10.3189/172756504781830277, 2004. a
Schwikowski, M.: Reconstruction of European Air Pollution from Alpine
Ice Cores, in: Earth Paleoenvironments: Records Preserved in Mid-
and Low-Latitude Glaciers, Developments in
Paleoenvironmental Research, edited by: DeWayne Cecil, L., Green, J. R.,
and Thompson, L. G., Kluwer Academic Publishers,
Dordrecht, 9, 95–119, https://doi.org/10.1007/1-4020-2146-1_6, 2004. a
Shumskii, P. A.: Principles of Structural Glaciology: The Petrography
of Fresh-water Ice as a Method of Glaciological Investigation,
Dover Publications Inc., New York, 1964. a
Sturm, M., Holmgren, J., König, M., and Morris, K.: The thermal conductivity
of seasonal snow, J. Glaciol., 43, 26–41,
https://doi.org/10.3189/S0022143000002781, 1997. a, b, c
Suter, S.: Cold firn and ice in the Monte Rosa and Mont Blanc areas:
spatial occurrence, surface energy balance and climatic evidence, PhD
thesis, ETH Zürich, https://doi.org/10.3929/ethz-a-004288434, 2002. a, b, c
Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M.: Cold
firn and ice of high-altitude glaciers in the Alps: measurements and
distribution modelling, J. Glaciol., 47, 85–96,
https://doi.org/10.3189/172756501781832566, 2001. a, b, c
Thevenon, F., Anselmetti, F. S., Bernasconi, S. M., and Schwikowski, M.:
Mineral dust and elemental black carbon records from an Alpine ice core
(Colle Gnifetti glacier) over the last millennium, J. Geophys. Res., 114,
D17102, https://doi.org/10.1029/2008JD011490, 2009. a, b
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019. a, b, c, d, e, f
van Pelt, W. J. and Kohler, J.: Modelling the long-term mass balance and firn
evolution of glaciers around Kongsfjorden, Svalbard, J.
Glaciol., 61, 731–744, https://doi.org/10.3189/2015JoG14J223, 2015. a, b, c
van Pelt, W. J., Pettersson, R., Pohjola, V. A., Marchenko, S., Claremar, B.,
and Oerlemans, J.: Inverse estimation of snow accumulation along a radar
transect on Nordenskiöldbreen, Svalbard, J. Geophys.
Res.-Earth Surf., 119, 816–835, https://doi.org/10.1002/2013JF003040, 2014. a
van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pohjola, V. A., Pettersson, R., and van Angelen, J. H.: Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model, The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012, 2012. a, b, c, d, e, f, g
Vandecrux, B., Mottram, R., Langen, P. L., Fausto, R. S., Olesen, M., Stevens, C. M., Verjans, V., Leeson, A., Ligtenberg, S., Kuipers Munneke, P., Marchenko, S., van Pelt, W., Meyer, C. R., Simonsen, S. B., Heilig, A., Samimi, S., Marshall, S., Machguth, H., MacFerrin, M., Niwano, M., Miller, O., Voss, C. I., and Box, J. E.: The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet, The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, 2020. a
Vincent, C., Le Meur, E., Six, D., Possenti, P., Lefebvre, E., and Funk, M.:
Climate warming revealed by englacial temperatures at Col du Dôme (4250
m, Mont Blanc area), Geophys. Res. Lett., 34, L16502, https://doi.org/10.1029/2007GL029933,
2007. a
Vincent, C., Gilbert, A., Jourdain, B., Piard, L., Ginot, P., Mikhalenko, V., Possenti, P., Le Meur, E., Laarman, O., and Six, D.: Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area), The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, 2020. a
Visit Monte Rosa: Stazioni meteo Monte Rosa Val d'Aosta e Piemonte,
available at: https://www.visitmonterosa.com/stazioni-meteo/, last access:
December 2020. a
Wagenbach, D., Bohleber, P., and Preunkert, S.: Cold, alpine ice bodies
revisited: what may we learn from their impurity and isotope content?,
Geogr. Ann. A, 94, 245–263,
https://doi.org/10.1111/j.1468-0459.2012.00461.x, 2012. a, b, c, d
Wahl, S., Bollmeyer, C., Crewell, S., Figura, C., Friederichs, P., Hense, A.,
Keller, J. D., and Ohlwein, C.: A novel convective-scale regional reanalysis
COSMO-REA2: Improving the representation of precipitation,
Meteorol. Z., 26, 345–361, https://doi.org/10.1127/metz/2017/0824,
2017.
a
Wolff, E., Barbante, C., Becagli, S., Bigler, M., Boutron, C., Castellano, E.,
de Angelis, M., Federer, U., Fischer, H., Fundel, F., Hansson, M., Hutterli,
M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G., Mulvaney,
R., Röthlisberger, R., Ruth, U., Severi, M., Siggaard-Andersen, M., Sime,
L., Steffensen, J., Stocker, T., Traversi, R., Twarloh, B., Udisti, R.,
Wagenbach, D., and Wegner, A.: Changes in environment over the last 800,000
years from chemical analysis of the EPICA Dome C ice core, Quaternary
Sci. Rev., 29, 285–295, https://doi.org/10.1016/j.quascirev.2009.06.013, 2010. a
Yen, Y.-C.: Review of thermal properties of snow, ice and sea ice, CRREL
report 81-10, DTIC, Hanover, New Hampshire, USA, 1981. a
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier...