Articles | Volume 15, issue 6
The Cryosphere, 15, 2739–2755, 2021
https://doi.org/10.5194/tc-15-2739-2021
The Cryosphere, 15, 2739–2755, 2021
https://doi.org/10.5194/tc-15-2739-2021

Research article 18 Jun 2021

Research article | 18 Jun 2021

Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow

Kévin Fourteau et al.

Related authors

Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores
Xavier Faïn, Rachael H. Rhodes, Place Philip, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-28,https://doi.org/10.5194/cp-2021-28, 2021
Revised manuscript under review for CP
Short summary
Macroscopic water vapor diffusion is not enhanced in snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 389–406, https://doi.org/10.5194/tc-15-389-2021,https://doi.org/10.5194/tc-15-389-2021, 2021
Short summary
Historical porosity data in polar firn
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177, https://doi.org/10.5194/essd-12-1171-2020,https://doi.org/10.5194/essd-12-1171-2020, 2020
Short summary
Estimation of gas record alteration in very low-accumulation ice cores
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522, https://doi.org/10.5194/cp-16-503-2020,https://doi.org/10.5194/cp-16-503-2020, 2020
Short summary
Multi-tracer study of gas trapping in an East Antarctic ice core
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019,https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Snow Physics
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021,https://doi.org/10.5194/tc-15-4381-2021, 2021
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021,https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021,https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021,https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Macroscopic water vapor diffusion is not enhanced in snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 389–406, https://doi.org/10.5194/tc-15-389-2021,https://doi.org/10.5194/tc-15-389-2021, 2021
Short summary

Cited articles

Auriault, J.: Heterogeneous medium. Is an equivalent macroscopic description possible?, International J. Engin. Sci., 29, 785–795, https://doi.org/10.1016/0020-7225(91)90001-J, 1991. a
Auriault, J.-L., Boutin, C., and Geindreau, C.: Homogenization of coupled phenomena in heterogenous media, vol. 149, John Wiley & Sons, 2010. a, b, c
Batchelor, G. K. and Brien, R. W.: Thermal or electrical conduction through a granular material, Proc. Royal Soc. Lond. A. Math. Phys. Sci., 355, 313–333, https://doi.org/10.1098/rspa.1977.0100, 1977. a, b
Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Roscoat, S. R., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011GL049234, 2011. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Calonne, N., Geindreau, C., and Flin, F.: Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization, J. Phys. Chem. B, 118, 13393–13403, https://doi.org/10.1021/jp5052535, 2014. a, b, c, d, e, f, g, h, i, j, k
Download
Short summary
The thermal conductivity of snow is an important physical property governing the thermal regime of a snowpack and its substrate. We show that it strongly depends on the kinetics of water vapor sublimation and that previous experimental data suggest a rather fast kinetics. In such a case, neglecting water vapor leads to an underestimation of thermal conductivity by up to 50 % for light snow. Moreover, the diffusivity of water vapor in snow is then directly related to the thermal conductivity.