Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2021-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2021-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Cooperative Institute for Research In Environmental Sciences,
University of Colorado Boulder, Boulder, 80309, USA
Shawn J. Marshall
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Environment and Climate Change Canada, Gatineau, Quebec, K1A 0H3,
Canada
Brian J. Moorman
Department of Geography, University of Calgary, Calgary, Alberta, T2N
1N4, Canada
Alison S. Criscitiello
Department of Earth and Atmospheric Sciences, University of Alberta,
Edmonton, T6G 2R3, Canada
Luke Copland
Department of Geography, Environment and Geomatics, University of
Ottawa, Ottawa, Ontario K1N 6N5, Canada
Related authors
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
The Cryosphere, 19, 3655–3680, https://doi.org/10.5194/tc-19-3655-2025, https://doi.org/10.5194/tc-19-3655-2025, 2025
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) are increasing with an increase in extreme melt events and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
Dorota Medrzycka, Luke Copland, Laura Thomson, William Kochtitzky, and Braden Smeda
Geosci. Instrum. Method. Data Syst., 14, 69–90, https://doi.org/10.5194/gi-14-69-2025, https://doi.org/10.5194/gi-14-69-2025, 2025
Short summary
Short summary
This work explores the use of aerial photography surveys for mapping glaciers, specifically in challenging environments. Using examples from two glaciers in Arctic Canada, we discuss the main factors which can affect data collection and review methods for capturing and processing images to create accurate topographic maps. Key recommendations include choosing the right camera and positioning equipment and adapting survey design to maximise data quality, even under less-than-ideal conditions.
Laurane Charrier, Amaury Dehecq, Lei Guo, Fanny Brun, Romain Millan, Nathan Lioret, Luke Copland, Nathan Maier, Christine Dow, and Paul Halas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3409, https://doi.org/10.5194/egusphere-2024-3409, 2025
Short summary
Short summary
While global annual glacier velocities are openly accessible, sub-annual velocity time series are still lacking. This hinders our ability to understand flow processes and the integration of these observations in numerical models. We introduce an open source Python package called TICOI to fuses multi-temporal and multi-sensor image-pair velocities produced by different processing chains to produce standardized sub-annual velocity products.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier
The Cryosphere, 18, 3699–3722, https://doi.org/10.5194/tc-18-3699-2024, https://doi.org/10.5194/tc-18-3699-2024, 2024
Short summary
Short summary
A subglacial lake was proposed to exist beneath Devon Ice Cap in the Canadian Arctic based on the analysis of airborne data. Our study presents a new interpretation of the subglacial material beneath the Devon Ice Cap from surface-based geophysical data. We show that there is no evidence of subglacial water, and the subglacial lake has likely been misidentified. Re-evaluation of the airborne data shows that overestimation of a critical processing parameter has likely occurred in prior studies.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Ingalise Kindstedt, Kristin M. Schild, Dominic Winski, Karl Kreutz, Luke Copland, Seth Campbell, and Erin McConnell
The Cryosphere, 16, 3051–3070, https://doi.org/10.5194/tc-16-3051-2022, https://doi.org/10.5194/tc-16-3051-2022, 2022
Short summary
Short summary
We show that neither the large spatial footprint of the MODIS sensor nor poorly constrained snow emissivity values explain the observed cold offset in MODIS land surface temperatures (LSTs) in the St. Elias. Instead, the offset is most prominent under conditions associated with near-surface temperature inversions. This work represents an advance in the application of MODIS LSTs to glaciated alpine regions, where we often depend solely on remote sensing products for temperature information.
Anja Rutishauser, Donald D. Blankenship, Duncan A. Young, Natalie S. Wolfenbarger, Lucas H. Beem, Mark L. Skidmore, Ashley Dubnick, and Alison S. Criscitiello
The Cryosphere, 16, 379–395, https://doi.org/10.5194/tc-16-379-2022, https://doi.org/10.5194/tc-16-379-2022, 2022
Short summary
Short summary
Recently, a hypersaline subglacial lake complex was hypothesized to lie beneath Devon Ice Cap, Canadian Arctic. Here, we present results from a follow-on targeted aerogeophysical survey. Our results support the evidence for a hypersaline subglacial lake and reveal an extensive brine network, suggesting more complex subglacial hydrological conditions than previously inferred. This hypersaline system may host microbial habitats, making it a compelling analog for bines on other icy worlds.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Shawn J. Marshall and Kristina Miller
The Cryosphere, 14, 3249–3267, https://doi.org/10.5194/tc-14-3249-2020, https://doi.org/10.5194/tc-14-3249-2020, 2020
Short summary
Short summary
Surface-albedo measurements from 2002 to 2017 from Haig Glacier in the Canadian Rockies provide no evidence of long-term trends (i.e., the glacier does not appear to be darkening), but there are large variations in albedo over the melt season and from year to year. The glacier ice is exceptionally dark in association with forest fire fallout but is effectively cleansed by meltwater or rainfall. Summer snowfall plays an important role in refreshing the glacier surface and reducing summer melt.
Cited articles
Bader, H.: Sorge's law of densification of snow on high polar glaciers, J.
Glaciol., 2, 319–323, 1954.
Bell, C., Mair, D., Burgess, D., Sharp, M., Demuth, M., Cawkwell, F.,
Bingham, R., and Wadham, J.: Spatial and temporal variability in the snowpack
of a High Arctic ice cap: implications for mass-change measurements, Ann.
Glaciol., 48, 159–170, https://doi.org/10.3189/172756408784700725, 2008.
Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B., and Rémy, F.:
Contribution of Alaskan glaciers to sea-level rise derived from satellite
imagery, Nat. Geosci., 3, 92–95, https://doi.org/10.1038/ngeo737, 2010.
Bezeau, P., Sharp, M., Burgess, D., and Gascon, G.: Firn profile changes in
response to extreme 21st-century melting at Devon Ice Cap, Nunavut, Canada,
J. Glaciol., 59, 981–991, https://doi.org/10.3189/2013JoG12J208, 2013.
Christianson, K., Kohler, J., Alley, R. B., Nuth, C., and Van Pelt, W. J. J.:
Dynamic perennial firn aquifer on an Arctic glacier, Geophys. Res. Lett., 42,
1418–1426, https://doi.org/10.1002/2014GL062806, 2015.
Cogley, J. G.: Geodetic and direct mass-balance measurements: comparison and
joint analysis, Ann. Glaciol., 50, 96–100,
https://doi.org/10.3189/172756409787769744, 2009.
Coléou, C. and Lesaffre, B.: Irreducible water saturation in snow:
experimental results in a cold laboratory, Ann. Glaciol., 26, 64–68,
https://doi.org/10.3189/1998AoG26-1-64-68, 1998.
Cuffey, K. M. and Paterson, W.: The Physics of Glaciers (4th ed.), Boston,
Elsevier, 1–683, 2010.
de la Peña, S., Howat, I. M., Nienow, P. W., van den Broeke, M. R., Mosley-Thompson, E., Price, S. F., Mair, D., Noël, B., and Sole, A. J.: Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming, The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, 2015.
Ebrahimi, S. and Marshall, S. J.: Surface energy balance sensitivity to meteorological variability on Haig Glacier, Canadian Rocky Mountains, The Cryosphere, 10, 2799–2819, https://doi.org/10.5194/tc-10-2799-2016, 2016.
Fountain, A. G.: The storage of water in, and hydraulic characteristics of,
the firn of South Cascade Glacier, Washington State, USA, Ann. Glaciol., 13,
69–75, https://doi.org/10.3189/S0260305500007667, 1989.
Fountain, A. G.: Effect of Snow and Firn Hydrology on the Physical and
Chemical Characteristics of Glacial Runoff, Hydrol. Process., 10, 509–521,
https://doi.org/10.1002/(SICI)1099-1085(199604)10:4%3C509::AID-HYP389%3E3.0.CO;2-3,
1996.
Fountain, A. G. and Walder, J. S.: Water flow through temperate glaciers,
Rev. Geophys., 36, 299–328, https://doi.org/10.1029/97RG03579, 1998.
Foy, N., Copland, L., Zdanowicz, C., Demuth, M., and Hopkinson, C.: Recent
volume and area changes of Kaskawulsh Glacier, Yukon, Canada, J. Glaciol.,
57, 515–525, https://doi.org/10.3189/002214311796905596, 2011.
Gascon, G., Sharp, M., Burgess, D., Bezeau, P., and Bush, A. B. G.: Changes
in accumulation-area firn stratigraphy and meltwater flow during a period of
climate warming: Devon Ice Cap, Nunavut, Canada, J. Geophys. Res.-Earth
Surf., 118, 2380–2391, https://doi.org/10.1002/2013JF002838, 2013.
Glazyrin, G. E., Glazyrina, E. L., Kislov, B. V., and Pertzinger, F. I.: Water level
regime in deep firn pits on Abramov glacier,
Gidrometeoizdat, 45, 54–61, 1977 (in Russian).
Grew, E. and Mellor, M.: High snowfields of the St. Elias Mountains, Yukon
Territory, Canada, Hanover, N.H. U.S. Army Materiel Command, Cold Regions
Research & Engineering Laboratory Technical Report, 177, 1–26, 1966.
Harper, J., Humphrey, N., Pfeffer, T., and Brown, J.: Firn Stratigraphy and
Temperature to 10 m Depth in the Percolation Zone of Western Greenland,
2007–2009, Institute of Arctic and Alpine Research, University of Colorado,
Occasional Paper 60, 2011.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.:
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566,
2012.
Hawrylak, M. and Nilsson, E.: Spatial and Temporal Variations in a
Perennial Firn Aquifer on Lomonosovfonna, Svalbard, Uppsala University
Independent Project, available at:
http://www.diva-portal.se/smash/get/diva2:1319193/FULLTEXT01.pdf (last access: 20 April 2021), 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3803, 2020.
Holdsworth, G.: An Examination and Analysis of the Formation of Transverse
Crevasses, Kaskawulsh Glacier, Yukon Territory, Canada, Institute of Polar Studies, Ohio State University, Columbus, Ohio, 16, 1965.
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T.: Thermal tracking of
meltwater retention in Greenland's accumulation area, J. Geophys. Res., 117,
F01010, https://doi.org/10.1029/2011JF002083, 2012.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Jansson, P., Hock, R., and Schneider, T.: The concept of glacier storage: A
review, J. Hydrol., 282, 116–129,
https://doi.org/10.1016/S0022-1694(03)00258-0, 2003.
Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L.: Initial in
situ measurements of perennial meltwater storage in the Greenland firn
aquifer, Geophys. Res. Lett., 41, 81–85,
https://doi.org/10.1002/2013GL058083, 2014.
Koerner, R. M.: Devon Island Ice Cap: Core Stratigraphy and Paleoclimate,
Science, 146, 347–353, https://doi.org/10.1126/science.196.4285.15, 1977.
Kuipers Munneke, P. K., Ligtenberg, S. R. M., Van Den Broeke, M. R., Van
Angelen, J. H., and Forster, R. R.: Explaining the presence of perennial
liquid water bodies in the firn of the Greenland Ice Sheet, Geophys. Res.
Lett., 41, 476–483, https://doi.org/10.1002/2013GL058389, 2014.
Larsen, C. F., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J., and
Kienholz, C.: Surface melt dominates Alaska glacier mass balance, Geophys.
Res. Lett., 42, 5902–5908, https://doi.org/10.1002/2015GL064349, 2015.
Lenaerts, J. T. M., Medley, B., van den Broeke, M. R., and Wouters, B.:
Observing and Modeling Ice Sheet Surface Mass Balance, Rev. Geophys., 57,
376–420, https://doi.org/10.1029/2018RG000622, 2019.
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011.
MacFerrin, M., Machguth, H., van As, D. C., Charalampidis, C., Stevens, C. M.,
Heilig, A., Vandecrux, B., Langen, P. L., Mottram, R., Fettweis,
X., van den Broeke, M. R., Pfeffer, W. T., Moussavi1, M. S., and
Abdalati. W.: Rapid expansion of Greenland's low-permeability ice slabs,
Nature, 573, 403–407, https://doi.org/10.1038/s41586-019-1550-3, 2019.
Machguth, H., MacFerrin, M., van As, D., Box, J. E.,
Charalampidis, C., Colgan, W., Fausto, R. S., Meijer, H. A. J.,
Mosley-Thompson, E., and van de Wal, R. S. W.: Greenland meltwater storage in
firn limited by near-surface ice formation, Nat. Clim. Change, 6,
390–393, https://doi.org/10.1038/nclimate2899, 2016.
Marchenko, S., Pohjola, V. A., Pettersson, R., Van Pelt, W. J., Vega, C. P.,
Machguth, H., Bøggild, C. E., and Isaksson, E.: A plot-scale study of firn
stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video
and GPR surveys in 2012–14, J. Glaciol., 63, 67–78,
https://doi.org/10.1017/jog.2016.118, 2017.
Marcus, M. G. and Ragle, R. H.: Snow accumulation in the Icefield Ranges,
St. Elias Mountains, Yukon, Arct. Alp. Res., 2, 277–292, 1970.
Marshall, S.: MATLAB code for firn thermodynamic and hydrological modelling, Scholars Portal Dataverse, V1, https://doi.org/10.5683/SP2/WRWJAZ, 2021.
Miège, C., Forster, R., Brucker, L., Koenig, L., Solomon, D.K., Paden,
J. D., Box., J. E., Burges, E. W., Miller, J. Z., McNerney, L., Brautigam,
N., Fausto, R. S., and Gogineni, S.: Spatial extent and temporal variability
of Greenland firn aquifers detected by ground and airborne radars, J.
Geophys. Res.-Earth Surf., 121, 2381–2398,
https://doi.org/10.1002/2016JF003869, 2016.
Miller, O., Solomon, D. K., Miège, C., Koenig, L., Forster, R., Schmerr, N., Ligtenberg, S. R., Legchenko, A., Voss, C. I., Montgomery, L., and McConnell, J. R.: Hydrology of a perennial firn aquifer in southeast Greenland: An
overview driven by field data, Water Resour. Res., 56, e2019WR026348,
https://doi.org/10.1029/2019WR026348, 2020.
Moholdt, G., Hagen, J. O., Eiken, T., and Schuler, T. V.: Geometric changes and mass balance of the Austfonna ice cap, Svalbard, The Cryosphere, 4, 21–34, https://doi.org/10.5194/tc-4-21-2010, 2010a.
Moholdt, G., Nuth, C., Hagen, J. O., and Kohler, J.: Recent elevation changes
of Svalbard glaciers derived from ICESat laser altimetry, Remote Sens.
Environ., 114, 2756–2767, https://doi.org/10.1016/j.rse.2010.06.008, 2010b.
Neff, P. D., Steig, E. J., Clark, D. H., McConnell, J. R., Pettit,
E. C., and Menounos, B.: Ice-core net snow accumulation and seasonal
snow chemistry at a temperate-glacier site: Mount Waddington, southwest
British Columbia, Canada, J. Glaciol., 58, 1165–1175,
https://doi.org/10.3189/2012JoG12J078, 2012.
Noël, B., van de Berg, W. J., Lhermitte, S., Wouters, B., Schaffer, N.,
and van den Broeke, M. R.: Six decades of glacial mass loss in the Canadian
Arctic Archipelago, J. Geophys. Res.-Earth Surf., 123, 1430–1449,
https://doi.org/10.1029/2017JF004304, 2018.
Noël, B., Jakobs, C. L., van Pelt, W. J. J., Lhermitte, S., Wouters, B.,
Kohler, J., Hagen, J. O., Luks, B., Reijmer, C. H., Van de Berg, W. J., and van
den Broeke, M. R.: Low elevation of Svalbard glaciers drives high mass loss
variability, Nat. Commun., 11, 1–8,
https://doi.org/10.1038/s41467-020-18356-1 2020.
Ochwat, N.: Kaskawulsh Glacier Firn Cores, TIB AV Portal, https://doi.org/10.5446/50918, 2021a.
Ochwat, N.: Kaskawulsh Firn Core Drilling, TIB AV Portal, https://doi.org/10.5446/50919, 2021b.
Parry, V., Nienow, P., Mair, D., Scott, J., Hubbard, B., Steffen, K., and
Wingham, D.: Investigations of meltwater refreezing and density variations in
the snowpack and firn within the percolation zone of the Greenland ice
sheet, Ann. Glaciol., 61–68, https://doi.org/10.3189/172756407782871332, 2007.
Pohjola, V. A., Moore, J. C., Isaksson, E., Jauhiainen, T., van de Wal, R.
S. W., Martma, T., Meijer, H. A. J., and Vaikmäe, R.: Effect of periodic
melting on geochemical and isotopic signals in an ice core from
Lomonosovfonna, Svalbard, J. Geophys. Res., 107, 4036,
https://doi.org/10.1029/2000JD000149, 2002.
Poli, P.,Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thepaut, J., Tremolet, Y., Holm, E. V., Bonavita, M., Isaksen, L., and Fisher, M.: ERA-20C: An atmospheric
reanalysis of the 20th century, J. Climate, 29, 4083–407,
https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Reeh, N.: A nonsteady-state firn-densification model for the percolation
zone of a glacier, J. Geophys. Res., 113, F03023,
https://doi.org/10.1029/2007JF000746, 2008.
Rohatgi, A.: WebPlotDigitizer, Version 4.3, available at: https://automeris.io/WebPlotDigitizer (last access: 1 October 2020), 2020.
Samimi, S. and Marshall, S. J.: Diurnal cycles of meltwater percolation,
refreezing, and drainage in the supraglacial snowpack of Haig Glacier,
Canadian Rocky Mountains, Front. Earth Sci., 5, 1–15, https://doi.org/10.3389/feart.2017.00006, 2017.
Samimi, S., Marshall, S. J., and MacFerrin, M.: Meltwater penetration
through temperate ice layers in the percolation zone at DYE-2, Greenland Ice
Sheet, Geophys. Res. Lett., 47, e2020GL089211, https://doi.org/10.1029/2020GL089211, 2020.
Schaffer, N., Copland, L., Zdanowicz, C., Burgess, D., and Nilsson, J.:
Revised estimates of recent mass loss rates for Penny Ice Cap, Baffin
Island, based on 2005–2014 elevation changes modified for firn
densification, J. Geophys. Res.-Earth Surf., 125, e2019JF005440,
https://doi.org/10.1029/2019JF005440, 2020.
Schneider, T.: Water movement in the firn of Storglaciären, J. Glaciol.,
45, 286–294, https://doi.org/10.3189/S0022143000001787, 1999.
Schneider, T. and Jansson, P.: Internal accumulation in firn and its
significance for the mass balance of Storglaciären, Sweden, J. Glaciol.,
50, 25–34, https://doi.org/10.3189/172756504781830277, 2004.
Sommerfeld, R. and LaChapelle, E.: The classification of snow
metamorphism, J. Glaciol., 9, 3–18,
https://doi.org/10.3189/S0022143000026757, 1970.
Sorge, E.: Glaziologische Unterzuchungen in Eismitte.
Wissenschaftliche Ergebnisse der Deutchen Gronland-Expedition Alfred-Wegener
1929 und 1930–1931, in: Im Auftrag der Notgemeinschaft
der Deutschen Wissenschaft, Band III, edited by: Wegener, K., Glaziologie, 3, 270, 1935.
Trabant, D. C. and Mayo, L. R.: Estimation and effects of internal
accumulation on five glaciers in Alaska, Ann. Glaciol., 6, 113–117,
https://doi.org/10.3189/1985AoG6-1-113-117, 1985.
van As, D., Box, J. E., and Fausto, R. S.: Challenges of QuantifyingMeltwater Retention in Snow and Firn:An Expert Elicitation, Front. Earth Sci., 4, 101, https://doi.org/10.3389/feart.2016.00101, 2016.
Vandecrux, B., Mottram, R., Langen, P. L., Fausto, R. S., Olesen, M., Stevens, C. M., Verjans, V., Leeson, A., Ligtenberg, S., Kuipers Munneke, P., Marchenko, S., van Pelt, W., Meyer, C. R., Simonsen, S. B., Heilig, A., Samimi, S., Marshall, S., Machguth, H., MacFerrin, M., Niwano, M., Miller, O., Voss, C. I., and Box, J. E.: The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet, The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, 2020.
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Wagner, P. W.: Description and evolution of snow and ice features and snow
surface forms on the Kaskawulsh Glacier, Icefield Ranges Research Project:
Scientific Results, 1, 51–53, 1969.
Williamson, S., Zdanowicz, C., Anslow, F., S. Clarke, G. K. C., Copland, L.,
Danby, R. K., Flowers, G. E., Holdsworth, G., Jarosch, A. H., and Hik, D.
S.: Evidence for elevation-dependent warming in the St. Elias Mountains,
Yukon, Canada, J. Climate, 33, 3253–3269, https://doi.org/10.1175/JCLI-D-19-0405.1,
2020.
Wood, W. A.: The Icefield Ranges Research Project, Geo. Rev., 53, 503–529,
https://doi.org/10.1126/science.15.370.195, 1963.
Yalcin, K., Wake, C. P., Kreutz, K. J., and Whitlow, S. I.: A 1000-yr record
of forest fire activity from Eclipse Icefield, Yukon, Canada, Holocene,
16, 200–209, https://doi.org/10.1191/0959683606hl920rp,
2006.
Young, E. M., Flowers, G. E., Berthier, E., and Latto, R.: An imbalancing
act: the delayed dynamic response of the Kaskawulsh Glacier to sustained
mass loss, J. Glaciol., https://doi.org/10.1017/jog.2020.107,
2020.
Zagorodnov, V., Nagornov, O., and Thompson, L: Influence of air temperature
on a glacier's active-layer temperature, Ann. Glaciol., 43, 285–291,
https://doi.org/10.3189/172756406781812203, 2006.
Zdanowicz, C., Smetny-Sowa, A., Fisher, D., Schaffer, N., Copland, L., Eley,
J., and Dupont, F.: Summer melt rates on Penny Ice Cap, Baffin Island: Past
and recent trends and implications for regional climate. J. Geophys. Res.-Earth Surf, 117, F02006, https://doi.org/10.1029/2011JF002248, 2012.
Zdanowicz, C., Fisher, D., Bourgeois, J., Demuth, M., Sheng, J., Mayewski,
P., Kreutz, K., Osterberg, E., Yalcin, K., Wake, C., Steig, E., Froese, D.,
and Goto-Azuma, K.: Ice cores from the St. Elias Mountains, Yukon, Canada:
Their significance for climate, atmospheric composition and volcanism in the
North Pacific region, Arctic, 67, 35–57, https://doi.org/10.14430/arctic4352, 2014.
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate...