Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1587-2021
https://doi.org/10.5194/tc-15-1587-2021
Research article
 | 
01 Apr 2021
Research article |  | 01 Apr 2021

Winter drainage of surface lakes on the Greenland Ice Sheet from Sentinel-1 SAR imagery

Corinne L. Benedek and Ian C. Willis

Related authors

Seasonal land-ice-flow variability in the Antarctic Peninsula
Karla Boxall, Frazer D. W. Christie, Ian C. Willis, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 3907–3932, https://doi.org/10.5194/tc-16-3907-2022,https://doi.org/10.5194/tc-16-3907-2022, 2022
Short summary
Lateral meltwater transfer across an Antarctic ice shelf
Rebecca Dell, Neil Arnold, Ian Willis, Alison Banwell, Andrew Williamson, Hamish Pritchard, and Andrew Orr
The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020,https://doi.org/10.5194/tc-14-2313-2020, 2020
Short summary
Supraglacial debris thickness variability: impact on ablation and relation to terrain properties
Lindsey I. Nicholson, Michael McCarthy, Hamish D. Pritchard, and Ian Willis
The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018,https://doi.org/10.5194/tc-12-3719-2018, 2018
Short summary
Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018,https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet
N. S. Arnold, A. F. Banwell, and I. C. Willis
The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014,https://doi.org/10.5194/tc-8-1149-2014, 2014

Related subject area

Discipline: Ice sheets | Subject: Greenland
First results of the polar regional climate model RACMO2.4
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024,https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Mapping the vertical heterogeneity of Greenland's firn from 2011–2019 using airborne radar and laser altimetry
Anja Rutishauser, Kirk M. Scanlan, Baptiste Vandecrux, Nanna B. Karlsson, Nicolas Jullien, Andreas P. Ahlstrøm, Robert S. Fausto, and Penelope How
The Cryosphere, 18, 2455–2472, https://doi.org/10.5194/tc-18-2455-2024,https://doi.org/10.5194/tc-18-2455-2024, 2024
Short summary
Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates
Guy J. G. Paxman, Stewart S. R. Jamieson, Aisling M. Dolan, and Michael J. Bentley
The Cryosphere, 18, 1467–1493, https://doi.org/10.5194/tc-18-1467-2024,https://doi.org/10.5194/tc-18-1467-2024, 2024
Short summary
Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024,https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary

Cited articles

Alley, R., Dupont, T., Parizek, B., and Anandakrishnan, S.: Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights, Ann. Glaciol., 40, 8–14, 2005. a
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, 2014. a, b
Banwell, A., Arnold, N., Willis, I., Tedesco, M., and Ahlstrøm, A.: Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet, J. Geophys. Res.-Earth, 117, F04012, https://doi.org/10.1029/2012JF002393, 2012. a
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls drainage development beneath the Greenland ice sheet, J. Geophys. Res.-Earth, 121, 2248–2269, 2016. a, b
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408, https://doi.org/10.1038/ngeo863, 2010. a
Download
Short summary
The surface of the Greenland Ice Sheet contains thousands of surface lakes. These lakes can deliver water through cracks to the ice sheet base and influence the speed of ice flow. Here we look at instances of lakes draining in the middle of winter using the Sentinel-1 radar satellites. Winter-draining lakes can help us understand the mechanisms for lake drainages throughout the year and can point to winter movement of water that will impact our understanding of ice sheet hydrology.