Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter drainage of surface lakes on the Greenland Ice Sheet from Sentinel-1 SAR imagery
Corinne L. Benedek
CORRESPONDING AUTHOR
Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER, UK
Ian C. Willis
Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER, UK
Related authors
No articles found.
Connor Wolfgang Dean, Randall Scharien, Ian Willis, and Kali Anne McDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-4588, https://doi.org/10.5194/egusphere-2025-4588, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study we track winter supraglacial lake drainage on the Greenland Ice Sheet. Winter drainage is hard to observe, so we used synthetic aperture radar images to build a method that detects events across ten winter seasons. We find drainage occurs every winter, often in cascades, is most common at lower elevations, and indicates clear links to summer drainage and melt conditions. Winter drainage seldom drives seasonal changes in ice speed, though brief increases can follow cascade events.
Karla Boxall, Frazer D. W. Christie, Ian C. Willis, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 3907–3932, https://doi.org/10.5194/tc-16-3907-2022, https://doi.org/10.5194/tc-16-3907-2022, 2022
Short summary
Short summary
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first evidence for seasonal flow variability of land ice draining to George VI Ice Shelf (GVIIS), Antarctica. Ultimately, our findings imply that other glaciers in Antarctica may be susceptible to – and/or currently undergoing – similar ice-flow seasonality, including at the highly vulnerable and rapidly retreating Pine Island and Thwaites glaciers.
Cited articles
Alley, R., Dupont, T., Parizek, B., and Anandakrishnan, S.: Access of surface
meltwater to beds of sub-freezing glaciers: preliminary insights, Ann.
Glaciol., 40, 8–14, 2005. a
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, 2014. a, b
Banwell, A., Arnold, N., Willis, I., Tedesco, M., and Ahlstrøm, A.: Modeling
supraglacial water routing and lake filling on the Greenland Ice Sheet,
J. Geophys. Res.-Earth, 117, F04012, https://doi.org/10.1029/2012JF002393, 2012. a
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M., and Sole, A.:
Seasonal evolution of subglacial drainage and acceleration in a Greenland
outlet glacier, Nat. Geosci., 3, 408, https://doi.org/10.1038/ngeo863, 2010. a
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., Palmer, S., and
Wadham, J.: Supraglacial forcing of subglacial drainage in the ablation zone
of the Greenland ice sheet, Geophys. Res. Lett., 38, L08502, https://doi.org/10.1029/2011GL047063, 2011. a
Benedek, C. and Willis, I.: Research data supporting Winter Drainage of Surface Lakes on the Greenland Ice Sheet from Sentinel-1 SAR Imagery, Apollo – University of Cambridge Repository, https://doi.org/10.17863/CAM.66094, 2021. a
Box, J. and Ski, K.: Remote sounding of Greenland supraglacial melt lakes:
implications for subglacial hydraulics, J. Glaciol., 53, 257–265,
2007. a
Christoffersen, P., Bougamont, M., Hubbard, A., Doyle, S., Grigsby, S., and
Pettersson, R.: Cascading lake drainage on the Greenland Ice Sheet triggered
by tensile shock and fracture, Nat. Commun., 9, 1064, https://doi.org/10.1038/s41467-018-03420-8, 2018. a, b, c
Chudley, T. R., Chrisoffersen, P., Doyle, S. H., Dowling, T., Law, R., Schoonman, C., Bougamont, M., and Hubbard, B.: Structural controls on the hydrology of crevasses on the Greenland ice sheet, Earth and Space Science Open Archive, 25, https://doi.org/10.1002/essoar.10502979.1, 2020. a
Clason, C. C., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., Sole, A., Palmer, S., and Schwanghart, W.: Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland, The Cryosphere, 9, 123–138, https://doi.org/10.5194/tc-9-123-2015, 2015. a
Dieser, M., Broemsen, E., Cameron, K., King, G., Achberger, A., Choquette, K.,
Hagedorn, B., Sletten, R., Junge, K., and Christner, B.: Molecular and
biogeochemical evidence for methane cycling beneath the western margin of the
Greenland Ice Sheet, ISME J., 8, 2305, https://doi.org/10.1038/ismej.2014.59, 2014. a
Dow, C., Kulessa, B., Rutt, I., Tsai, V., Pimentel, S., Doyle, S., Van As, D.,
Lindbäck, K., Pettersson, R., Jones, G., and Hubbard, A.: Modeling of subglacial
hydrological development following rapid supraglacial lake drainage, J.
Geophys. Res.-Earth, 120, 1127–1147, 2015. a
Doyle, S. H., Hubbard, A. L., Dow, C. F., Jones, G. A., Fitzpatrick, A., Gusmeroli, A., Kulessa, B., Lindback, K., Pettersson, R., and Box, J. E.: Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet, The Cryosphere, 7, 129–140, https://doi.org/10.5194/tc-7-129-2013, 2013. a, b
Dunmire, D., Lenaerts, J., Banwell, A., Wever, N., Shragge, J., Lhermitte, S.,
Drews, R., Pattyn, F., Hansen, J., Willis, I., Miller, J., and Keenan, E.: Observations of buried
lake drainage on the Antarctic Ice Sheet, Geophys. Res. Lett., 47,
e2020GL087970, https://doi.org/10.1029/2020GL087970, 2020. a
ESA: Sentinel-1, available at: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/,
last access: 23 March 2021. a
Forster, R., Box, J., Van Den Broeke, M., Miège, C., Burgess, E.,
Van Angelen, J., Lenaerts, J., Koenig, L., Paden, J., Lewis, C., Gogineni, S., Leuschen, C., and McConnell, J.:
Extensive liquid meltwater storage in firn within the Greenland ice sheet,
Nat. Geosci., 7, 95–98, 2014. a
Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A.,
Simmons, S., Chandler, D., Tedstone, A., and Nienow, P.: The Greenland Ice
Sheet as a hot spot of phosphorus weathering and export in the Arctic, Global
Biogeochem. Cy., 30, 191–210, 2016. a
Hewitt, I.: Seasonal changes in ice sheet motion due to melt water lubrication,
Earth Planet. Sci. Lett., 371, 16–25, 2013. a
Hoffman, M., Catania, G., Neumann, T., Andrews, L., and Rumrill, J.: Links
between acceleration, melting, and supraglacial lake drainage of the western
Greenland Ice Sheet, J. Geophys. Res.-Earth, 116, F04035, https://doi.org/10.1029/2010JF001934,
2011. a
Hoffman, M., Perego, M., Andrews, L., Price, S., Neumann, T., Johnson, J.,
Catania, G., and Lüthi, M.: Widespread moulin formation during
supraglacial lake drainages in Greenland, Geophys. Res. Lett., 45,
778–788, 2018. a
Howat, I.: MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps
from Optical Images, Version 2, NASA National Snow and Ice Data Center
Distributed Active Archive Center, Boulder, Colorado, https://doi.org/10.5067/VM5DZ20MYF5C, 2017. a, b
Johansson, A. M. and Brown, I. A.: Observations of supra-glacial lakes in west
Greenland using winter wide swath Synthetic Aperture Radar, Remote Sens.
Lett., 3, 531–539, 2012. a
Koenig, L., Miège, C., Forster, R., and Brucker, L.: Initial in situ
measurements of perennial meltwater storage in the Greenland firn aquifer,
Geophys. Res. Lett., 41, 81–85, 2014. a
Koenig, L. S., Lampkin, D. J., Montgomery, L. N., Hamilton, S. L., Turrin, J. B., Joseph, C. A., Moutsafa, S. E., Panzer, B., Casey, K. A., Paden, J. D., Leuschen, C., and Gogineni, P.: Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet, The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, 2015. a
Koziol, C., Arnold, N., Pope, A., and Colgan, W.: Quantifying supraglacial
meltwater pathways in the Paakitsoq region, West Greenland, J.
Glaciol., 63, 464–476, 2017. a
Krawczynski, M., Behn, M., Das, S., and Joughin, I.: Constraints on the lake
volume required for hydro-fracture through ice sheets, Geophys. Res.
Lett., 36, L10501 https://doi.org/10.1029/2008GL036765, 2009. a
Lamarche-Gagnon, G., Wadham, J., Lollar, B., Arndt, S., Fietzek, P., Beaton,
A., Tedstone, A., Telling, J., Bagshaw, E., Hawkings, J., Kohler, T., Zarsky, J., Mowlem, M., Anesio, A., and Stibal, M.: Greenland
melt drives continuous export of methane from the ice-sheet bed, Nature, 565,
73–77, 2019. a
Lampkin, D., Koenig, L., Joseph, C., and Box, J.: Investigating Controls on the
Formation and Distribution of Wintertime Storage of Water in Supraglacial
Lakes, Front. Earth Sci., 8, 370, https://doi.org/10.3389/feart.2020.00370, 2020. a
Leeson, A. A., Shepherd, A., Palmer, S., Sundal, A., and Fettweis, X.: Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet, The Cryosphere, 6, 1077–1086, https://doi.org/10.5194/tc-6-1077-2012, 2012. a
Leeson, A., Shepherd, A., Sundal, A., Johansson, A., Selmes, N., Briggs, K.,
Hogg, A., and Fettweis, X.: A comparison of supraglacial lake observations
derived from MODIS imagery at the western margin of the Greenland ice sheet,
J. Glaciology, 59, 1179–1188, 2013. a
Liang, Y., Colgan, W., Lv, Q., Steffen, K., Abdalati, W., Stroeve, J.,
Gallaher, D., and Bayou, N.: A decadal investigation of supraglacial lakes in
West Greenland using a fully automatic detection and tracking algorithm,
Remote Sens. Environ., 123, 127–138, 2012. a
Lüthje, M., Pedersen, L., Reeh, N., and Greuell, W.: Modelling the
evolution of supraglacial lakes on the West Greenland ice-sheet margin,
J. Glaciol., 52, 608–618, 2006. a
Moussavi, M., Abdalati, W., Pope, A., Scambos, T., Tedesco, M., MacFerrin, M.,
and Grigsby, S.: Derivation and validation of supraglacial lake volumes on
the Greenland Ice Sheet from high-resolution satellite imagery, Remote
Sens. Environ., 183, 294–303, 2016. a
Musilova, M., Tranter, M., Wadham, J., Telling, J., Tedstone, A., and Anesio,
A.: Microbially driven export of labile organic carbon from the Greenland ice
sheet, Nat. Geosci., 10, 360, https://doi.org/10.1038/ngeo2920, 2017. a
Noh, M. and Howat, I.: Automated stereo-photogrammetric DEM generation at high
latitudes: Surface Extraction with TIN-based Search-space Minimization
(SETSM) validation and demonstration over glaciated regions, GISci.
Remote Sens., 52, 198–217, 2015. a
Pimentel, S. and Flowers, G.: A numerical study of hydrologically driven
glacier dynamics and subglacial flooding, P. R. Soc. A, 467, 537–558, 2010. a
Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., and Grigsby, S.: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, 2016. a, b, c, d, e, f, g, h
Porter, C., Morin, P., Howat, I., Noh, M., Bates, B., Peterman, K., Keesey, S.,
Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M.,
Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M., Williamson,
C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A.,
D’Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, V1, https://doi.org/10.7910/DVN/OHHUKH, Harvard Dataverse, V1,
2018. a, b
Rennermalm, A. K., Smith, L. C., Chu, V. W., Box, J. E., Forster, R. R., Van den Broeke, M. R., Van As, D., and Moustafa, S. E.: Evidence of meltwater retention within the Greenland ice sheet, The Cryosphere, 7, 1433–1445, https://doi.org/10.5194/tc-7-1433-2013, 2013. a
Russell, A.: Supraglacial lake drainage near Sendre Strømjjord, Greenland,
J. Glaciol., 39, 431–433, 1993. a
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature,
468, 803, https://doi.org/10.1038/nature09618, 2010. a
Schröder, L., Neckel, N., Zindler, R., and Humbert, A.: Perennial
supraglacial lakes in Northeast Greenland observed by polarimetric SAR,
Remote Sens., 12, 2798, https://doi.org/10.3390/rs12172798, 2020. a, b
Selmes, N., Murray, T., and James, T.: Fast draining lakes on the Greenland Ice
Sheet, Geophys. Res. Lett., 38, L15501, https://doi.org/10.1029/2011GL047872, 2011. a
Selmes, N., Murray, T., and James, T. D.: Characterizing supraglacial lake drainage and freezing on the Greenland Ice Sheet, The Cryosphere Discuss., 7, 475–505, https://doi.org/10.5194/tcd-7-475-2013, 2013. a, b, c
Shade, A., Peter, H., Allison, S., Baho, D., Berga, M., Bürgmann, H.,
Huber, D., Langenheder, S., Lennon, J., Martiny, J., Matulich, K., Schmidt, T., and Handelsman, J.: Fundamentals of
microbial community resistance and resilience, Front. Microbiol., 3,
417, https://doi.org/10.3389/fmicb.2012.00417, 2012. a
Sneed, W. and Hamilton, G.: Evolution of melt pond volume on the surface of the
Greenland Ice Sheet, Geophys. Res. Lett., 34, L030501, https://doi.org/10.1029/2006GL028697, 2007. a, b
Stevens, L., Behn, M., McGuire, J., Das, S., Joughin, I., Herring, T., Shean,
D., and King, M.: Greenland supraglacial lake drainages triggered by
hydrologically induced basal slip, Nature, 522, 73, https://doi.org/10.1038/nature14480, 2015. a, b, c
Tedesco, M., Lüthje, M., Steffen, K., Steiner, N., Fettweis, X., Willis,
I., Bayou, N., and Banwell, A.: Measurement and modeling of ablation of the
bottom of supraglacial lakes in western Greenland, Geophys. Res.
Lett., 39, L02502, https://doi.org/10.1029/2011GL049882, 2012.
a
Tedesco, M., Willis, I., Hoffman, M., Banwell, A., Alexander, P., and Arnold,
N.: Ice dynamic response to two modes of surface lake drainage on the
Greenland ice sheet, Environ. Res. Lett., 8, 034007, https://doi.org/10.1088/1748-9326/8/3/034007, 2013. a, b, c
Tsai, V. and Rice, J.: A model for turbulent hydraulic fracture and application
to crack propagation at glacier beds, J. Geophys. Res.-Earth, 115, F03007, https://doi.org/10.1029/2009JF001474, 2010. a
U.S. Geological Survey: Landsat 8, available at:
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con,
last access: 23 March 2021. a
van der Veen, C.: Fracture propagation as means of rapidly transferring surface
meltwater to the base of glaciers, Geophys. Res. Lett., 34, L01501, https://doi.org/10.1029/2006GL028385, 2007. a
Wadham, J., Tranter, M., Skidmore, M., Hodson, A., Priscu, J., Lyons, W.,
Sharp, M., Wynn, P., and Jackson, M.: Biogeochemical weathering under ice:
size matters, Global Biogeochem. Cy., 24, GB3025, https://doi.org/10.1029/2009GB003688, 2010. a
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016. a
Wangchuk, S., Bolch, T., and Zawadzki, J.: Towards automated mapping and
monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using
Sentinel-1 Synthetic Aperture Radar data, Int. J. Remote
Sens., 40, 4642–4667, 2019. a
Werder, M., Hewitt, I., Schoof, C., and Flowers, G.: Modeling channelized and
distributed subglacial drainage in two dimensions, J. Geophys.
Res.-Earth, 118, 2140–2158, 2013. a
White, A., Mueller, D., and Copland, L.: Reconstructing hydrographic change in
Petersen Bay, Ellesmere Island, Canada, inferred from SAR imagery, Remote
Sens. Environ., 165, 1–13, 2015. a
Short summary
The surface of the Greenland Ice Sheet contains thousands of surface lakes. These lakes can deliver water through cracks to the ice sheet base and influence the speed of ice flow. Here we look at instances of lakes draining in the middle of winter using the Sentinel-1 radar satellites. Winter-draining lakes can help us understand the mechanisms for lake drainages throughout the year and can point to winter movement of water that will impact our understanding of ice sheet hydrology.
The surface of the Greenland Ice Sheet contains thousands of surface lakes. These lakes can...