Articles | Volume 15, issue 3
The Cryosphere, 15, 1307–1319, 2021
The Cryosphere, 15, 1307–1319, 2021

Research article 12 Mar 2021

Research article | 12 Mar 2021

Combined influence of oceanic and atmospheric circulations on Greenland sea ice concentration

Sourav Chatterjee et al.

Related authors

Validation of wind measurements of two mesosphere–stratosphere–troposphere radars in northern Sweden and in Antarctica
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825,,, 2021
Short summary
The Arctic Front and its variability in the Norwegian Sea
Roshin P. Raj, Sourav Chatterjee, Laurent Bertino, Antonio Turiel, and Marcos Portabella
Ocean Sci., 15, 1729–1744,,, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Perspectives on future sea ice and navigability in the Arctic
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482,,, 2021
Short summary
Lasting impact of winds on Arctic sea ice through the ocean's memory
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725,,, 2021
Short summary
Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380,,, 2021
Short summary
Warm and moist atmospheric flow caused a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere Discuss.,,, 2021
Revised manuscript accepted for TC
Short summary
Presentation and evaluation of the Arctic sea ice forecasting system neXtSIM-F
Timothy Williams, Anton Korosov, Pierre Rampal, and Einar Ólason
The Cryosphere, 15, 3207–3227,,, 2021
Short summary

Cited articles

Aagaard, K.: Wind-driven transports in the Greenland and Norwegian seas, Deep-Sea Res. Oceanogr. Abstr., 17, 281–291,, 1970. 
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94, 14485–14498,, 1989. 
Bader, J., Mesquita, M. D. S., Hodges, K. I., Keenlyside, N., Østerhus, S., and Miles, M.: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes, Atmos. Res., 101, 809–834,, 2011. 
Belkin, I. M., Levitus, S., Antonov, J., and Malmberg, S. A.: Great Salinity Anomalies in the North Atlantic, Prog. Oceanogr., 41, 1–68,, 1998. 
Brakstad, A., Våge, K., Håvik, L., and Moore, G. W. K.: Water Mass Transformation in the Greenland Sea during the Period 1986–2016, J. Phys. Oceanogr., 49, 121–140,, 2019. 
Short summary
Sea ice in the Greenland Sea (GS) is important for its climatic (fresh water), economical (shipping), and ecological contribution (light availability). The study proposes a mechanism through which sea ice concentration in GS is partly governed by the atmospheric and ocean circulation in the region. The mechanism proposed in this study can be useful for assessing the sea ice variability and its future projection in the GS.