Articles | Volume 14, issue 3
https://doi.org/10.5194/tc-14-841-2020
https://doi.org/10.5194/tc-14-841-2020
Research article
 | 
06 Mar 2020
Research article |  | 06 Mar 2020

Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream

Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu

Related authors

Shifts in Greenland interannual climate variability lead Dansgaard-Oeschger abrupt warming by hundreds of years
Chloe A. Brashear, Tyler R. Jones, Valerie Morris, Bruce H. Vaughn, William H. G. Roberts, William B. Skorski, Abigail G. Hughes, Richard Nunn, Sune Olander Rasmussen, Kurt M. Cuffey, Bo M. Vinther, Todd Sowers, Christo Buizert, Vasileios Gkinis, Christian Holme, Mari F. Jensen, Sofia E. Kjellman, Petra M. Langebroek, Florian Mekhaldi, Kevin S. Rozmiarek, Jonathan W. Rheinlænder, Margit Simon, Giulia Sinnl, Silje Smith-Johnsen, and James W. C. White
EGUsphere, https://doi.org/10.5194/egusphere-2024-1003,https://doi.org/10.5194/egusphere-2024-1003, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Subglacial Processes
Improved monitoring of subglacial lake activity in Greenland
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024,https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling
Koi McArthur, Felicity S. McCormack, and Christine F. Dow
The Cryosphere, 17, 4705–4727, https://doi.org/10.5194/tc-17-4705-2023,https://doi.org/10.5194/tc-17-4705-2023, 2023
Short summary
Mapping age and basal conditions of ice in the Dome Fuji region, Antarctica, by combining radar internal layer stratigraphy and flow modeling
Zhuo Wang, Ailsa Chung, Daniel Steinhage, Frédéric Parrenin, Johannes Freitag, and Olaf Eisen
The Cryosphere, 17, 4297–4314, https://doi.org/10.5194/tc-17-4297-2023,https://doi.org/10.5194/tc-17-4297-2023, 2023
Short summary
Towards modelling of corrugation ridges at ice-sheet grounding lines
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023,https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023,https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary

Cited articles

Åkesson, H., Morlighem, M., Nisancioglu, K., Svendsen, J., and Mangerud, J.: Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet, Quaternary Sci. Rev., 195, 32–47, https://doi.org/10.1016/j.quascirev.2018.07.004, 2018. a
Alley, R. B., Pollard, D., Parizek, B. R., Anandakrishnan, S., Pourpoint, M., Stevens, N. T., MacGregor, J., Christianson, K., Muto, A., and Holschuh, N.: Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 124, 97–115, https://doi.org/10.1029/2018JF004714, 2019. a, b, c, d, e, f
Artemieva, I. M.: Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method, Earth-Sci. Rev., 188, 469–481, https://doi.org/10.1016/j.earscirev.2018.10.015, 2019. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012. a
Short summary
The Northeast Greenland Ice Stream (NEGIS) drains a large part of Greenland and displays fast flow far inland. However, the flow pattern is not well represented in ice sheet models. The fast flow has been explained by abnormally high geothermal heat flux. The heat melts the base of the ice sheet and the water produced may lubricate the bed and induce fast flow. By including high geothermal heat flux and a hydrology model, we successfully reproduce NEGIS flow pattern in an ice sheet model.