Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-585-2020
https://doi.org/10.5194/tc-14-585-2020
Research article
 | 
13 Feb 2020
Research article |  | 13 Feb 2020

Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014

Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp

Related authors

Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022,https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)
Levan G. Tielidze and Roger D. Wheate
The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018,https://doi.org/10.5194/tc-12-81-2018, 2018
Short summary
Supraglacial debris cover assessment in the Caucasus Mountains, 1986-2000-2014
Levan G. Tielidze, Roger D. Wheate, Stanislav S. Kutuzov, Kate Doyle, and Ivan I. Lavrentiev
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-96,https://doi.org/10.5194/essd-2017-96, 2017
Revised manuscript has not been submitted
Short summary
Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery
Levan G. Tielidze
The Cryosphere, 10, 713–725, https://doi.org/10.5194/tc-10-713-2016,https://doi.org/10.5194/tc-10-713-2016, 2016
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Brief Communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Forentine, and Andrew Fountain
EGUsphere, https://doi.org/10.5194/egusphere-2023-2408,https://doi.org/10.5194/egusphere-2023-2408, 2023
Short summary
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023,https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques
Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal
The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023,https://doi.org/10.5194/tc-17-2811-2023, 2023
Short summary
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023,https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023,https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary

Cited articles

Baraer, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J., Huh, K. I., Portocarrero, C., Gomez, J., and Rathay, S.: Glacier recession and water resources in Peru's Cordillera Blanca, J. Glaciol., 58, 134–150, 2012. 
Benn, D., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, 2012. 
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, Arnold, London, 1998. 
Bochud, M.: Tectonics of the Eastern Greater Caucasus in Azerbaijan, PhD Thesis, Faculty of Sciences of the University of Fribourg (Switzerland), 2011. 
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers in western Canada, 1985–2005, Remote Sens. Environ., 114, 127–137, https://doi.org/10.1016/j.rse.2009.08.015, 2010. 
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.