Articles | Volume 14, issue 2
The Cryosphere, 14, 585–598, 2020
https://doi.org/10.5194/tc-14-585-2020
The Cryosphere, 14, 585–598, 2020
https://doi.org/10.5194/tc-14-585-2020
Research article
13 Feb 2020
Research article | 13 Feb 2020

Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014

Levan G. Tielidze et al.

Related authors

Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022,https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)
Levan G. Tielidze and Roger D. Wheate
The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018,https://doi.org/10.5194/tc-12-81-2018, 2018
Short summary
Supraglacial debris cover assessment in the Caucasus Mountains, 1986-2000-2014
Levan G. Tielidze, Roger D. Wheate, Stanislav S. Kutuzov, Kate Doyle, and Ivan I. Lavrentiev
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-96,https://doi.org/10.5194/essd-2017-96, 2017
Revised manuscript has not been submitted
Short summary
Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery
Levan G. Tielidze
The Cryosphere, 10, 713–725, https://doi.org/10.5194/tc-10-713-2016,https://doi.org/10.5194/tc-10-713-2016, 2016
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes
Nicole Schaffer and Shelley MacDonell
The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022,https://doi.org/10.5194/tc-16-1779-2022, 2022
Short summary
Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022,https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Land- to lake-terminating transition triggers dynamic thinning of a Bhutanese glacier
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-286,https://doi.org/10.5194/tc-2021-286, 2021
Revised manuscript accepted for TC
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021,https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary

Cited articles

Baraer, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J., Huh, K. I., Portocarrero, C., Gomez, J., and Rathay, S.: Glacier recession and water resources in Peru's Cordillera Blanca, J. Glaciol., 58, 134–150, 2012. 
Benn, D., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, 2012. 
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, Arnold, London, 1998. 
Bochud, M.: Tectonics of the Eastern Greater Caucasus in Azerbaijan, PhD Thesis, Faculty of Sciences of the University of Fribourg (Switzerland), 2011. 
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers in western Canada, 1985–2005, Remote Sens. Environ., 114, 127–137, https://doi.org/10.1016/j.rse.2009.08.015, 2010. 
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.