Articles | Volume 14, issue 12
https://doi.org/10.5194/tc-14-4341-2020
https://doi.org/10.5194/tc-14-4341-2020
Research article
 | 
02 Dec 2020
Research article |  | 02 Dec 2020

Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada

Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber

Related authors

Simulating soil heat transfer with excess ice, erosion and deposition, guaranteed energy conservation, adaptive mesh refinement, and accurate spin-up (FreeThawXice1D)
Niccolò Tubini and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-2649,https://doi.org/10.5194/egusphere-2025-2649, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Beyond MAGT: learning more from permafrost thermal monitoring data with additional metrics
Nicholas Brown and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-2658,https://doi.org/10.5194/egusphere-2025-2658, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Detecting ground ice in warm permafrost with the dielectric relaxation time from SIP observations
Hosein Fereydooni, Stephan Gruber, David Stillman, and Derek Cronmiller
EGUsphere, https://doi.org/10.5194/egusphere-2025-1801,https://doi.org/10.5194/egusphere-2025-1801, 2025
Short summary
Brief communication: Reanalyses underperform in cold regions, raising concerns for climate services and research
Bin Cao and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-575,https://doi.org/10.5194/egusphere-2025-575, 2025
Short summary
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023,https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary

Cited articles

Alexander, E. B.: Bulk density equations for southern Alaska soils, Can. J. Soil Sci., 69, 177–180, https://doi.org/10.4141/cjss89-017, 1989. a
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E., and Larsonh, G. J.: How glaciers entrain and transport basal sediment: Physical constraints, Quaternary Sci. Rev., 16, 1017–1038, https://doi.org/10.1016/S0277-3791(97)00034-6, 1997. a
Bockheim, J. G., Hinkel, K. M., and Nelson, F. E.: Predicting carbon storage in tundra soils of Arctic Alaska, Soil Sci. Soc. Am. J., 67, 948–950, https://doi.org/10.2136/sssaj2003.0948, 2003. a
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012. a
Boulton, G. S.: Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation, J. Glaciol., 42, 43–62, https://doi.org/10.1017/S0022143000030525, 1996. a
Download
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Share