Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4039-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4039-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
Earth System Science and Department of Geography, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Philippe Huybrechts
Earth System Science and Department of Geography, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Oleg Rybak
Earth System Science and Department of Geography, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Water Problems
Institute, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia
FRC SSC RAS, Theatralnaya Str. 8a, 354000, Sochi, Russia
Victor V. Popovnin
Department of Geography, Lomonosov Moscow State University, 1
Leninskie Gory, 119991 Moscow, Russia
Related authors
No articles found.
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098, https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an ensemble of ice sheet model projections for the Greenland ice sheet. The focus is on providing projections that improve our understanding of the range future sea-level rise and the inherent uncertainties over the next 100 to 300 years. Compared to earlier work we more fully account for some of the uncertainties in sea-level projections. We include a wider range of climate model output, more climate change scenarios and we extend projections schematically up to year 2300.
Chloë Marie Paice, Xavier Fettweis, and Philippe Huybrechts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2465, https://doi.org/10.5194/egusphere-2025-2465, 2025
Short summary
Short summary
To study the interactions between the Greenland ice sheet and the atmosphere, we coupled an ice sheet model to a regional climate model and performed simulations of differing coupling complexity over 1000 years. They reveal that at first melt at the ice sheet margin is reduced by changing wind patterns. But over time, as the ice sheet surface lowers, precipitation patterns and cloudiness also change and amplify ice mass loss over the entire ice sheet.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023, https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Short summary
We investigated the different boundary conditions to allow ice sheet growth and ice sheet decline of the Antarctic ice sheet when it appeared ∼38–34 Myr ago. The thresholds for ice sheet growth and decline differ because of the different climatological conditions above an ice sheet (higher elevation and higher albedo) compared to a bare topography. We found that the ice–albedo feedback and the isostasy feedback respectively ease and delay the transition from a deglacial to glacial state.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 16, 4513–4535, https://doi.org/10.5194/tc-16-4513-2022, https://doi.org/10.5194/tc-16-4513-2022, 2022
Short summary
Short summary
We examine the thermal regime of the Grigoriev ice cap and the Sary-Tor glacier, both located in the inner Tien Shan in Kyrgyzstan. Our findings are important as the ice dynamics can only be understood and modelled precisely if ice temperature is considered correctly in ice flow models. The calibrated parameters of this study can be used in applications with ice flow models for individual ice masses as well as to optimise more general models for large-scale regional simulations.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020, https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
Short summary
We made projections of global mean sea-level change during the next 10 000 years for a range in climate forcing scenarios ranging from a peak in carbon dioxide concentrations in the next decades to burning most of the available carbon reserves over the next 2 centuries. We find that global mean sea level will rise between 9 and 37 m, depending on the emission of greenhouse gases. In this study, we investigated the long-term consequence of climate change for sea-level rise.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Ahouissoussi, N., Neumann, J. E., Srivastava, J. P., Okan, C., and Droogers,
P. (Eds.): Reducing the vulnerability of Georgia's agricultural systems to
climate change: impact assessment and adaptation options, World Bank
Publications, Georgia, 116 pp., 2014.
Akkemik, Ü, Dagdeviren, N., and Aras, A.: A preliminary reconstruction
(A.D. 1635–2000) of spring precipitation using oak tree rings in the
western Black Sea region of Turkey, Int. J. Biometeorol., 49, 297–302,
https://doi.org/10.1007/s00484--004--0249--8, 2005.
Akkemik, Ü. and Aras, A.: Reconstruction (1689–1994 AD) of
April–August precipitation in the southern part of central Turkey, Int. J.
Climatol., 25, 537–548, https://doi.org/10.1002/joc.1145, 2005.
Alder, J. R. and Hostetler, S. W.: An interactive web application for
visualizing climate data, Eos Trans. AGU, 94, 197–198, https://doi.org/10.1002/2013EO220001, 2013.
Aleynikov, A. A., Zolotarev, E. A., and Popovnin, V. V.: The velocity field
of Djankuat Glacier, Data of Glaciological
Studies, 87, 169–176, 1999 (in Russian).
Aleynikov, A. A., Zolotaryov, Ye. A., and Popovnin, V. V.: Ice divide
recognition on twinned glaciers: a case of the Djantugan firn plateau in the
Caucasus, Moscow Univ. Herald, 5, 36–43, 2002a.
Aleynikov, A. A., Popovnin, V. V., Voytkovskiy K. F., and Zolotaryov Ye. A.:
Indirect estimation of the Djankuat Glacier volume based on surface
topography, Hydrol. Res., 33, 95–110, https://doi.org/10.2166/nh.2002.0006, 2002b.
Allen, R. G., Trezza, R., and Tasumi, M.: Analytical integrated functions
for daily solar radiation on slopes, Agr. Forest Meteorol., 139,
55–73, https://doi.org/10.1016/j.agrformet.2006.05.012, 2006.
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016.
Belozerov, E., Rets, E., Petrakov, D., and Popovnin, V. V.: Modelling
glaciers' melting in Central Caucasus (the Djankuat and Bashkara Glacier
case study), E3S Web Conf., 163, 01002, https://doi.org/10.1051/e3sconf/202016301002, 2020.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.
I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of
debris-covered glaciers in the Mount Everest region to recent warming, and
implications for outburst flood hazards, Earth Sci. Rev., 114, 156–174,
https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Boyarsky, I. Y. (Ed.): The Djankuat Glacier,
Gidrometeoizdat, Leningrad, USSR, 184 pp., 1978 (in Russian).
Bozhinskiy, A. N., Krass, M. S., and Popovnin, V. V.: Role of debris cover
in the thermal physics of glaciers, J. Glaciol., 32, 255–266, https://doi.org/10.3189/S0022143000015598, 1986.
Carenzo, M., Pellicciotti, F., Mabillard, J., Reid, T., and Brock, B. W.: An
enhanced temperature index model for debris-covered glaciers accounting for
thickness effect, Adv. Water Resour., 94, 457–469, https://doi.org/10.1016/j.advwatres.2016.05.001, 2016.
Chernomorets, S. S., Petrakov, D. A., Aleynikov, A. A., Bekkiev, M. Y.,
Viskhadzhieva, K. S., Dokukin, M. D., Kalov, R. K., Kidyaeva, V. M.,
Krylenko, V. V., Krylenko, I. V., Krylenko, I. N., Rets, E. P., Savernyuk,
E. A., and Smirnov, A. M.: The outburst of Bashkara glacier lake (central
Caucasus, Russia) on september 1, 2017, Earth's Cryosphere, 22, 70–80, https://doi.org/10.21782/EC2541-9994-2018-2(61-70), 2018 (in Russian).
D'Arrigo, R. and Cullen, H. M.: A 350-year (AD 1628–1980) reconstruction
of Turkish precipitation, Dendrochronologia, 19, 169–177, 2001.
Dolgova, E.: June–September temperature reconstruction in the Northern
Caucasus based on blue intensity data, Dendrochronologia, 39, 17–23,
https://doi.org/10.1016/j.dendro.2016.03.002, 2016.
Dolgova, E. A., Matkovsky, V. V., Solomina, O. N., Rototaeva, O. V.,
Nosenko, G. A., and Khmelevskoy, I. F.: Reconstruction of the mass balance
of the Garabashi glacier (1800–2005) using dendrochronological data, Ice and Snow, 1, 34–41, https://doi.org/10.15356/2076-6734-2013-1-34-42, 2013 (in Russian).
Duffie, J. A. and Beckman, W. A.: Solar thermal energy processes, Wiley
Interscience, New York, 944 pp., 2006.
Dyurgerov, M. B. and Popovnin, V. V.: Reconstruction of mass balance,
spatial position, and liquid discharge of Dzhankuat Glacier since the second
half of the 19th century, Data of glaciological studies, 40, 111–126,
1988.
Fyodorov, V. M. and Zalikhanov, A. M.: Analysis of changes in the ice
resources of the Central Caucasus, Proc. T.I.Vyazemskiy Karadag Res. Station, RAS nature
reserve, 3, 68–83, 2018 (in Russian).
Gantayat, P., Kulkarni, A. V., Srinivasan, J., and Schmeits, M. J.:
Numerical modelling of past retreat and future evolution of Chhota Shigri
glacier in Western Indian Himalaya, Ann. Glaciol., 58, 136–144, https://doi.org/10.1017/aog.2017.21, 2017.
Giesen, R. H. and Oerlemans, J.: Response of the ice cap Hardangerjøkulen in southern Norway to the 20th and 21st century climates, The Cryosphere, 4, 191–213, https://doi.org/10.5194/tc-4-191-2010, 2010.
Giesen, R. H. and Oerlemans, J.: Calibration of a surface mass balance model for global-scale applications, The Cryosphere, 6, 1463–1481, https://doi.org/10.5194/tc-6-1463-2012, 2012.
Griggs, C., De Gaetano, A., Kuniholm, P., and Newton, M.: A regional
high-frequency reconstruction of May–June precipitation in the north Aegean
from oak tree rings, A.D. 1089–1989, Int. J. Climatol., 27, 1075–1089,
https://doi.org/10.1002/joc.1459, 2007.
Hagg, W., Shahgedanova, M., Mayer, C., Lambrecht, A., and Popovnin, V. V.: A
sensitivity study for water availability in the Northern Caucasus based on
climate projections, Glob. Planet. Change, 73, 161–171, https://doi.org/10.1016/j.gloplacha.2010.05.005, 2010.
Hambrey, M., Quincey, D., Glasser, N. F., Reynolds, J. M., Richardson, S.
J., and Clemmens, S.: Sedimentological, geomorphological and dynamic context
of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal,
Quaternary Sci. Rev., 27, 2341–2360, 2008.
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – The CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014 (updated
2018).
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, Al.,
Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in:
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, DC., Masson-Delmotte, V., Zhai, P., Tignor,
M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem,
A., Petzold, J., Rama, B., and Weyer, N. M., IPCC, 2019.
Holobâcă, I. H., Pop, O., and Petrea, D.: Dendroclimatic reconstruction of
late summer temperatures from upper treeline sites in Greater Caucasus,
Russia, Quat. Int., 415, 67–73, https://doi.org/10.1016/j.quaint.2015.10.103, 2016.
Huss, M., Bauder, A., and Funk, M.: Homogenization of long-term mass-balance
time series, Ann. Glaciol., 50, 198–206, https://doi.org/10.3189/172756409787769627, 2009.
Huss, M. and Fischer, M.: Sensitivity of very small glaciers in the Swiss
Alps to future climate change, Front. Earth Sci., 40, 1–17, https://doi.org/10.3389/feart.2016.00034, 2016.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, 1–22, https://doi.org/10.3389/feart.2015.00054, 2015.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Iqbal, M.: An introduction to solar radiation, Academic Press, Toronto, 390 pp., 1983.
Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and
Morice C. P.: Hemispheric and largescale land surface air temperature
variations: an extensive revision and an update to 2010, (v4.6.0.0, updated
2018), J. Geophys. Res., 117, 1–29, https://doi.org/10.1029/2011JD017139, 2012.
Jouvet, G., Huss, M., Funk, M., and Blatter, H.: Modelling the retreat of
Grosser Aletschgletscher, Switzerland, in a changing climate, J. Glaciol.,
57, 1033–1045, https://doi.org/10.3189/002214311798843359, 2011.
Kienholz, C., Hock, R., Truffer, M., Bieniek, P. A., and Lader, R.: Mass
balance evolution of Black Rapids glacier, Alaska, 1980–2100, and its
implications for surge recurrence, Front. Earth Sci., 5, 1–20, https://doi.org/10.3389/feart.2017.00056, 2017.
Kirkbride, M. P.: Ice-marginal geomorphology and Holocene expansion of
debris-covered Tasman Glacier, New Zealand. Debris-Covered Glaciers, Proceedings of a workshop held at Seattle, Washington, USA, September
2000, 264, 211–217, https://doi.org/10.1007/978-90-481-2642-2_622, 2000.
Köse, N., Akkemik, Ü., Dalfes, H. N., and Özeren, M. S.:
Tree-ring reconstructions of May–June precipitation for western Anatolia,
Quat. Res., 75, 438–450, https://doi.org/10.1016/j.yqres.2010.12.005, 2011.
Kotlyakov, V. M., Serebryanny, R. L., and Solomina, O. N: Climate change and
glacier fluctuation during the last 1,000 years in the Southern Mountains of
the USSR, Mt. Res. Dev., 11, 1–12, 1991.
Kuzmin, P. P.: The processes of Snow Cover Melting, Gidrometeoizdat,
Leningrad, USSR, 348 pp., 1961 [translated from Russian by E. Vilim].
Lambrecht, A., Mayer, C., Hagg, W., Popovnin, V., Rezepkin, A., Lomidze, N., and Svanadze, D.: A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus, The Cryosphere, 5, 525–538, https://doi.org/10.5194/tc-5-525-2011, 2011.
Lavrentiev, I. I., Kutuzov S. S., Petrakov, D. A., Popov, G. A., and
Popovnin, V. V.: Ice thickness, volume and subglacial relief of Djankuat
Glacier (Central Caucasus), Ice and Snow, 4, 7–19, https://doi.org/10.15356/2076-6734-2014-4-7-19, 2014 (in Russian).
Leclercq, P. W., Pitte, P., Giesen, R. H., Masiokas, M. H., and Oerlemans, J.: Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD, Clim. Past, 8, 1385–1402, https://doi.org/10.5194/cp-8-1385-2012, 2012.
Makowska, N., Zawierucha, K., Mokracka, J., and Koczura, R.: First report of
microorganisms of Caucasus glaciers (Georgia), Biol., 71, 620–625, https://doi.org/10.1515/biolog-2016-0086, 2016.
Martin-Benito, D., Ummenhofer C. C., Köse, N., Güner, H. T., and
Pederson, N.: Tree-ring reconstructed May–June precipitation in the
Caucasus since 1752 CE, Clim. Dyn., 47, 3011–3027, https://doi.org/10.1007/s00382-016-3010-1, 2016.
Nemec, J., Huybrechts, P., Rybak, O., and Oerlemans, J.: Reconstruction of
the annual balance of Vadret da Morteratsch, Switzerland, since 1865, Ann.
Glaciol., 50, 126–134, https://doi.org/10.3189/172756409787769609, 2009.
Nicholson, L. I. and Benn, D. I.: Calculating ice melt beneath a debris
layer using meteorological data, J. Glaciol., 52, 463–470, https://doi.org/10.3189/172756506781828584, 2006.
Oerlemans, J. and Knap, W. H.: A 1-year record of global radiation and
albedo in the ablation zone of Morteratschgletscher, Switzerland, J.
Glaciol., 44, 231–238, https://doi.org/10.3189/S0022143000002574, 1998.
Oerlemans, J.: Climate sensitivity of glaciers in southern Norway:
application of an energy-balance model to Nigardsbreen, Hellstugubreen and
Ålfotbreen, J. Glaciol., 38, 223–232, https://doi.org/10.3189/S0022143000003634, 1992.
Oerlemans, J.: A flowline model for Nigardsbreen, Norway: projection of
future glacier length based on dynamic calibration with the historic record,
Ann. Glaciol., 24, 382–389, https://doi.org/10.3189/S0260305500012489, 1997.
Oerlemans, J.: Glaciers and climate change, A. A. Balkema Publishers, Lisse,
160 pp., 2001.
Oerlemans, J.: The microclimate of valley glaciers, Utrecht Publishing and
Archiving Services, Utrechtm, 138 pp., 2010.
Østrem, G.: Ice melting under a thin layer of moraine, and the existence
of ice cores in moraine ridges, Geogr. Ann., 41, 228–230, 1959.
Pastukhov, V. G.: On the mass exchange of the Djankuat Glacier, Graduate work, Moscow State University
(Faculty of Geography), 185 pp., 2011 (in Russian).
Petrakov, D. A., Tutubalina, O. V., Aleynikov, A. A., Chernomorets, S. S.,
Evans, S. G., Kidyaeva, V. M., Krylenko, I. N., Norin, S. V., Shakhmina, M.
S., and Seynova, I. B.: Monitoring of Bashkara Glacier lakes (Central
Caucasus, Russia) and modelling of their potential outburst, Nat. Hazards,
61, 1293–1316, https://doi.org/10.1007/s11069-011-9983-5, 2012.
Popovnin, V. V.: Annual mass-balance series of a temperate glacier in the
Caucasus, reconstructed from an ice core, Geogr. Ann. Ser. A,
81, 713–724, https://doi.org/10.1111/1468--0459.00099, 1999.
Popovnin, V. V. and Naruse, R.: A 34-year long record of mass balance and
geometric changes of the Djankuat Glacier, Caucasus, Bull. Glaciol. Res.,
22, 121–133, 2005.
Popovnin, V. V. and Pylayeva T. V.: Avalanche feeding of Djankuat Glacier, Ice and snow, 55, 21–32, https://doi.org/10.15356/2076-6734-2015-2-21-32, 2015 (in Russian).
Popovnin, V. V. and Rozova, A.: Influence of sub-debris thawing on ablation
and runoff of the Djankuat Glacier in the Caucasus. Nord. Hydrol., 33,
75–94, 2002.
Popovnin, V. V., Rezepkin, A. A., and Tielidze, L. G.: Superficial moraine
expansion on the Djankuat glacier snout over the direct glaciological
monitoring period, Earth's
Cryosphere, 19, 79–87, 2015 (in Russian).
Rasul, G. and Molden, D.: The global social and economic consequences of
mountain cryospheric change, Front. Environ. Sci., 7, https://doi.org/10.3389/fenvs.2019.00091, 2019.
Rets, E. P., Popovnin, V. V., Toropov, P. A., Smirnov, A. M., Tokarev, I. V., Chizhova, J. N., Budantseva, N. A., Vasil'chuk, Y. K., Kireeva, M. B., Ekaykin, A. A., Veres, A. N., Aleynikov, A. A., Frolova, N. L., Tsyplenkov, A. S., Poliukhov, A. A., Chalov, S. R., Aleshina, M. A., and Kornilova, E. D.: Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017, Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, 2019.
Rezepkin, A. A. and Popovnin, V. V.: Influence of the surface moraine on
the state of Djankuat Glacier (Central Caucasus) by 2025, Ice and snow, 58, 307–321, https://doi.org/10.15356/2076-6734-2018-3-307-321, 2018 (in Russian).
Rototaeva, O. V., Nosenko, G. A., Khmelevskoy, I. F., and Tarasova, L. N.:
Balance state of the Garabashi glacier (Elbrus) in 1980-s and 1990-s,
Data of Glaciological Studies, 95, 111–121, 2003 (in Russian).
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling
the feedbacks between mass balance, ice flow and debris transport to predict
the response to climate change of debris covered glaciers in the Himalaya,
Earth Planet. Sc. Lett., 430, 427–438, https://doi.org/10.1016/j.epsl.2015.09.004,
2015.
Schaefli, B. and Huss, M.: Integrating point glacier mass balance observations into hydrologic model identification, Hydrol. Earth Syst. Sci., 15, 1227–1241, https://doi.org/10.5194/hess-15-1227-2011, 2011.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable
response of Himalayan glaciers to climate change affected by debris cover,
Nat. Geosci., 4, 156–159, 2011.
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial
Debris Cover Extents, Geophys. Res. Lett., 45, 11798–11805, https://doi.org/10.1029/2018GL080158, 2018.
Shahgedanova, M., Nosenko, G., Kutuzov, S., Rototaeva, O., and Khromova, T.: Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography, The Cryosphere, 8, 2367–2379, https://doi.org/10.5194/tc-8-2367-2014, 2014.
Shahgedanova, M., Popovnin, V. V., Aleynikov, A. A., Petrakov, D., and
Stokes, C. R.: Long-term change, inter-annual, and intra-seasonal
variability in climate and glacier mass balance in the Central Greater
Caucasus, Russia, Ann. Glaciol., 46, 355–361, https://doi.org/10.3189/172756407782871323, 2007.
Shahgedanova, M., Stokes, C. R., Gurney, S. D., and Popovnin, V. V.:
Interactions between mass balance, atmospheric circulation and recent
climate change on the Djankuat Glacier, Caucasus Mountains, Russia, J.
Geophys. Res.-Atmos., 110, D04108, https://doi.org/10.1029/2004JD005213, 2005.
Shannon, S., Smith, R., Wiltshire, A., Payne, T., Huss, M., Betts, R., Caesar, J., Koutroulis, A., Jones, D., and Harrison, S.: Global glacier volume projections under high-end climate change scenarios, The Cryosphere, 13, 325-350, https://doi.org/10.5194/tc-13-325-2019, 2019.
Solomina, O., Bushueva, I., Dolgova, E., Jomelli, V., Alexandrin, M.,
Mikhalenko, V., and Matskovsky, V.: Glacier variations in the Northern
Caucasus compared to climatic reconstructions over the past millennium,
Glob. Planet. Change, 140, 28–58, https://doi.org/10.1016/j.gloplacha.2016.02.008,
2016.
Stocker, T. F., Qin, D., Plattner, G. K., Alexander, L. V., Allen, S. K.,
Bindoff, N. L., Bréon, F. M., Church, J. A., Cubasch, U., Emori, S.,
Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann, D.
L., Jansen, E., Kirtman, B., Knutti, R., Krishna Kumar, K., Lemke, P.,
Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I. I., Piao, S.,
Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D.,
Talley, L. D., Vaughan, D. G., and Xie, S. P.: Technical summary, in: Climate Change 2013: The Physical Science Basis,
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK,
New York, NY, USA, 33–115, https://doi.org/10.1017/CBO9781107415324.005,
2013.
Stokes, C. R., Popovnin, V. V., Aleynikov, A. A., Gurney, S. D., and
Shahgedanova, M.: Recent glacier retreat in the Caucasus Mountains, Russia,
and associated increase in supraglacial debris cover and supra-/proglacial
lake development, Ann. Glaciol., 46, 195–203, https://doi.org/10.3189/172756407782871468, 2007.
Taillant, J. D.: Glaciers: the politics of ice, Oxford University Press,
Oxford, 360 pp., 2015.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tielidze, L. G.: Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery, The Cryosphere, 10, 713–725, https://doi.org/10.5194/tc-10-713-2016, 2016.
Tielidze, L. G. and Wheate, R. D.: The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan), The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018, 2018.
Tielidze, L. G., Bolch, T., Wheate, R. D., Kutuzov, S. S., Lavrentiev, I. I., and Zemp, M.: Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014, The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, 2020.
Toropov P. A., Shestakova, A., and Smirnov, A. M.: Methodological aspects of
heat balance components estimation on mountain glaciers, Russ. J. Earth
Sci., 17, 1–9, https://doi.org/10.2205/2017ES000605, 2017.
Toropov, P. A., Aleshina, I. A., Kislov, A. V., and Semenov, V. A.: Trends
of climate change in the Black sea-Caspian region in the last 30 years, Moscow University Herald, Geogr. Ser., 5, 67–77, 2018 (in
Russian).
Toucham, R., Garfin, G. M., Meko, D. M., Funkhouser, G., Erkan, N., Hughes,
M. K., and Wallin, B. S.: Preliminary reconstructions of spring
precipitation in southwestern Turkey from tree-ring width, Int. J.
Climatol., 23, 157–171, https://doi.org/10.1002/joc.850, 2003.
Vacco, D. A., Alley, R. B., and Pollard, D.: Glacier advance and stagnation
caused by rock avalanches, Earth Planet. Sc. Lett., 294, 123–130, https://doi.org/10.1016/j.epsl.2010.03.019, 2010.
Verhaegen, Y. and Huybrechts, P.: A 1D coupled ice flow-supraglacial debris cover model for the Djankuat Glacier, Zenodo, https://doi.org/10.5281/zenodo.4075093, 2020.
Volodicheva, N.: The Caucasus, in: The
Physical Geography of Northern Eurasia, edited by: Shahgedanova, M., Oxford University Press, 350–376,
2002.
Voloshina, A. P.: Meteorology of mountain glaciers, Data of Glaciological Studies, 92, 3–138, 2002 (in Russian).
Wirbel, A., Jarosch, A. H., and Nicholson, L.: Modelling debris transport within glaciers by advection in a full-Stokes ice flow model, The Cryosphere, 12, 189–204, https://doi.org/10.5194/tc-12-189-2018, 2018.
WGMS: Djankuat, North Caucasus, World Glacier Monitoring Service,
available at: https://wgms.ch/products_ref_glaciers/djankuat/, last access: 17 December 2018.
Zekollari, H., Fürst, J., and Huybrechts, P.: Modelling the evolution of
Vadret da Morteratsch (Switzerland) since the Little Ice Age and into the
future, J. Glaciol., 60, 1155–1168, https://doi.org/10.3189/2014JoG14J053, 2014.
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S., Hoelzle, M., Paul,
F., Haeberli, W., Denzinger, F., Ahlstrøm, A., Anderson, B., Bajracharya,
S., Baroni, C., Braun, L., Càceres, B., Casassa, G., Cobos, G.,
Dàvila, L., Delgado Granados, H., Demuth, M., Espizua, L., Fischer, A.,
Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J., Holmlund, P., Karimi, N.,
Li, Z., Pelto, M., Pitte, P., Popovnin, V., Portocarrero, C., Prinz, R.,
Sangewar, C., Severskiy, I., Sigurdsson, O., Soruco, A., Usubaliev, R., and
Vincent, C.: Historically unprecedented global glacier decline in the early
21st century, J. Glaciol., 61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
Zolotarev, E. A.: About the “moraine of the 30s” and the size of the
Dzhankuat glacier, Data of Glaciological Studies, 87, 177–183, 1998 (in Russian).
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS...