Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4039-2020
https://doi.org/10.5194/tc-14-4039-2020
Research article
 | 
16 Nov 2020
Research article |  | 16 Nov 2020

Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE

Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin

Related authors

Extending the range and reach of physically-based Greenland ice sheet sea-level projections
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098,https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Positive feedbacks drive the Greenland ice sheet evolution in millennial-length MAR–GISM simulations under a high-end warming scenario
Chloë Marie Paice, Xavier Fettweis, and Philippe Huybrechts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2465,https://doi.org/10.5194/egusphere-2025-2465, 2025
Short summary
Hysteresis and orbital pacing of the early Cenozoic Antarctic ice sheet
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023,https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023,https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023,https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary

Cited articles

Ahouissoussi, N., Neumann, J. E., Srivastava, J. P., Okan, C., and Droogers, P. (Eds.): Reducing the vulnerability of Georgia's agricultural systems to climate change: impact assessment and adaptation options, World Bank Publications, Georgia, 116 pp., 2014. 
Akkemik, Ü, Dagdeviren, N., and Aras, A.: A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the western Black Sea region of Turkey, Int. J. Biometeorol., 49, 297–302, https://doi.org/10.1007/s00484--004--0249--8, 2005. 
Akkemik, Ü. and Aras, A.: Reconstruction (1689–1994 AD) of April–August precipitation in the southern part of central Turkey, Int. J. Climatol., 25, 537–548, https://doi.org/10.1002/joc.1145, 2005. 
Alder, J. R. and Hostetler, S. W.: An interactive web application for visualizing climate data, Eos Trans. AGU, 94, 197–198, https://doi.org/10.1002/2013EO220001, 2013. 
Aleynikov, A. A., Zolotarev, E. A., and Popovnin, V. V.: The velocity field of Djankuat Glacier, Data of Glaciological Studies, 87, 169–176, 1999 (in Russian). 
Download
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.
Share