Articles | Volume 14, issue 11
The Cryosphere, 14, 4039–4061, 2020
https://doi.org/10.5194/tc-14-4039-2020
The Cryosphere, 14, 4039–4061, 2020
https://doi.org/10.5194/tc-14-4039-2020

Research article 16 Nov 2020

Research article | 16 Nov 2020

Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE

Yoni Verhaegen et al.

Related authors

Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021,https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
A Gaussian process emulator for simulating ice sheet-climate interactions on a multi-million year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-136,https://doi.org/10.5194/gmd-2021-136, 2021
Revised manuscript accepted for GMD
Short summary
GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020,https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Semi-equilibrated global sea-level change projections for the next 10 000 years
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020,https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020,https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021,https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary
Modelling steady states and the transient response of debris-covered glaciers
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021,https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Twentieth century global glacier mass change: an ensemble-based model reconstruction
Jan-Hendrik Malles and Ben Marzeion
The Cryosphere, 15, 3135–3157, https://doi.org/10.5194/tc-15-3135-2021,https://doi.org/10.5194/tc-15-3135-2021, 2021
Short summary
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020,https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Brief communication: Time step dependence (and fixes) in Stokes simulations of calving ice shelves
Brandon Berg and Jeremy Bassis
The Cryosphere, 14, 3209–3213, https://doi.org/10.5194/tc-14-3209-2020,https://doi.org/10.5194/tc-14-3209-2020, 2020
Short summary

Cited articles

Ahouissoussi, N., Neumann, J. E., Srivastava, J. P., Okan, C., and Droogers, P. (Eds.): Reducing the vulnerability of Georgia's agricultural systems to climate change: impact assessment and adaptation options, World Bank Publications, Georgia, 116 pp., 2014. 
Akkemik, Ü, Dagdeviren, N., and Aras, A.: A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the western Black Sea region of Turkey, Int. J. Biometeorol., 49, 297–302, https://doi.org/10.1007/s00484--004--0249--8, 2005. 
Akkemik, Ü. and Aras, A.: Reconstruction (1689–1994 AD) of April–August precipitation in the southern part of central Turkey, Int. J. Climatol., 25, 537–548, https://doi.org/10.1002/joc.1145, 2005. 
Alder, J. R. and Hostetler, S. W.: An interactive web application for visualizing climate data, Eos Trans. AGU, 94, 197–198, https://doi.org/10.1002/2013EO220001, 2013. 
Aleynikov, A. A., Zolotarev, E. A., and Popovnin, V. V.: The velocity field of Djankuat Glacier, Data of Glaciological Studies, 87, 169–176, 1999 (in Russian). 
Download
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.