Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3611-2020
https://doi.org/10.5194/tc-14-3611-2020
Research article
 | 
02 Nov 2020
Research article |  | 02 Nov 2020

Sea ice drift and arch evolution in the Robeson Channel using the daily coverage of Sentinel-1 SAR data for the 2016–2017 freezing season

Mohammed E. Shokr, Zihan Wang, and Tingting Liu

Related authors

Inter-comparison and evaluation of Arctic sea ice type products
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023,https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Inter-comparison and evaluation of sea ice type concentration algorithms
Yufang Ye, Mohammed Shokr, Signe Aaboe, Wiebke Aldenhoff, Leif E. B. Eriksson, Georg Heygster, Christian Melsheimer, and Fanny Girard-Ardhuin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-200,https://doi.org/10.5194/tc-2019-200, 2019
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Rapid sea ice changes in the future Barents Sea
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023,https://doi.org/10.5194/tc-17-1445-2023, 2023
Short summary
Causes and evolution of winter polynyas north of Greenland
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023,https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023,https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635, https://doi.org/10.5194/tc-16-4617-2022,https://doi.org/10.5194/tc-16-4617-2022, 2022
Short summary
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022,https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary

Cited articles

Bourbigot, M., Johnsen, H., Piantanida, R., and Hajduch, G.: Sentinel-1 product definition, MDA, SEN-RS-52-7440, 2016. 
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2017. 
Demchev, D., Volkov, V., Kazakov, E., Alcantarilla, P. F., Sandven, S., and Khmeleva, V.: Sea ice drift tracking from Sequential SAR images using accelerated-KAZE features, IEEE T. Geosci. Remote, 55, 5174–5184, https://doi.org/10.1109/TGRS.2017.2703084, 2017. 
Dumont, D., Gratton, Y., and Arbetter, T. E.: Modelling the dynamics of the North Water Polynya ice bridge, J. Phys. Oceanogr., 39, 1448–1461, https://doi.org/10.1175/2008JPO3965.1, 2009. 
Download
Short summary
This paper uses sequential daily SAR images covering the Robeson Channel to quantitatively study kinematics of individual ice floes with exploration of wind influence and the evolution of the ice arch at the entry of the channel. Results show that drift of ice floes within the Robeson Channel and the arch are both significantly influenced by wind. The study highlights the advantage of using the high-resolution daily SAR coverage in monitoring sea ice cover in narrow water passages.