Articles | Volume 14, issue 8
https://doi.org/10.5194/tc-14-2567-2020
https://doi.org/10.5194/tc-14-2567-2020
Research article
 | 
12 Aug 2020
Research article |  | 12 Aug 2020

A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data

Marcel König and Natascha Oppelt

Related authors

Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023,https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024,https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023,https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago: 2016–2022
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2023-2366,https://doi.org/10.5194/egusphere-2023-2366, 2023
Short summary
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary

Cited articles

Albert, A. and Mobley, C.: An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters, Opt. Express, 11, 2873, https://doi.org/10.1364/OE.11.002873, 2003. 
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea Ice-Albedo Climate Feedback Mechanism, J. Climate, 8, 240–247, https://doi.org/10.1175/1520-0442(1995)008{<}0240:SIACFM{>}2.0.CO;2, 1995. 
Flocco, D., Schroeder, D., Feltham, D. L., and Hunke, E. C.: Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007, J. Geophys. Res.-Oceans, 117, C09032, https://doi.org/10.1029/2012JC008195, 2012. 
Gege, P.: The water color simulator WASI: an integrating software tool for analysis and simulation of optical in situ spectra, Comput. Geosci., 30, 523–532, https://doi.org/10.1016/j.cageo.2004.03.005, 2004. 
Gege, P.: WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters, Comput. Geosci., 62, 208–215, https://doi.org/10.1016/j.cageo.2013.07.022, 2014. 
Download
Short summary
We used data that we collected on RV Polarstern cruise PS106 in summer 2017 to develop a model for the derivation of melt pond depth on Arctic sea ice from reflectance measurements. We simulated reflectances of melt ponds of varying color and water depth and used the sun zenith angle and the slope of the log-scaled reflectance at 710 nm to derive pond depth. We validated the model on the in situ melt pond data and found it to derive pond depth very accurately.