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Abstract. Melt ponds are key elements in the energy balance
of Arctic sea ice. Observing their temporal evolution is cru-
cial for understanding melt processes and predicting sea ice
evolution. Remote sensing is the only technique that enables
large-scale observations of Arctic sea ice. However, monitor-
ing melt pond deepening in this way is challenging because
most of the optical signal reflected by a pond is defined by
the scattering characteristics of the underlying ice. Without
knowing the influence of meltwater on the reflected signal,
the water depth cannot be determined. To solve the problem,
we simulated the way meltwater changes the reflected spec-
tra of bare ice. We developed a model based on the slope
of the log-scaled remote sensing reflectance at 710 nm as a
function of depth that is widely independent from the bot-
tom albedo and accounts for the influence of varying solar
zenith angles. We validated the model using 49 in situ melt
pond spectra and corresponding depths from shallow ponds
on dark and bright ice. Retrieved pond depths are accurate
(root mean square error, RMSE= 2.81 cm; nRMSE= 16 %)
and highly correlated with in situ measurements (r = 0.89;
p = 4.34× 10−17). The model further explains a large por-
tion of the variation in pond depth (R2

= 0.74). Our results
indicate that our model enables the accurate retrieval of pond
depth on Arctic sea ice from optical data under clear sky con-
ditions without having to consider pond bottom albedo. This
technique is potentially transferrable to hyperspectral remote
sensors on unmanned aerial vehicles, aircraft and satellites.

1 Introduction

Melt ponds on sea ice are key elements for the Arctic energy
budget. They are a main driver of the ice–albedo feedback
mechanism (Curry et al., 1995) and affect the mass and heat
balance of sea ice (e.g., Flocco et al., 2012; Perovich et al.,
2009). Observations of pond evolution can be linked to ob-
servations of sea ice, ocean and atmosphere (e.g., Inoue et al.,
2008; Polashenski et al., 2012; Webster et al., 2015) for vali-
dation of ice and climate models (e.g., Flocco et al., 2012)
and future sea ice prediction (e.g., Schröder et al., 2014).
In the context of climate change, it is therefore important
to increase our understanding of how melt ponds on sea ice
change (Lee et al., 2012).

Recent efforts were made to observe the evolution of melt
pond fraction with satellite data (e.g., Istomina et al., 2015a,
2015b; Rösel et al., 2012; Tschudi et al., 2008; Zege et al.,
2015), but few studies investigated melt pond depth despite
its relevance for many applications. Melt pond depth is a pa-
rameter in the Los Alamos sea ice model CICE (Flocco et al.,
2012; Hunke et al., 2013) and the ECHAM5 general circu-
lation model (Pedersen et al., 2009). Lecomte et al. (2011)
used pond depth to parameterize melt pond albedo in a snow
scheme for the thermodynamic component of the Louvain-
la-Neuve sea ice model. Holland et al. (2012) related pond
water volume to surface meltwater fluxes in the community
climate system model, version 4, and Palmer et al. (2014)
used melt pond depths to model primary production below
sea ice. Liu et al. (2015) point out that climate models and
forecast systems that account for realistic melt pond evolu-
tion “seem to be a worthy area of expanded research and de-
velopment” (Liu et al., 2015) and question the suitability of
statistical forecasting methods in the context of the changing
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Arctic, which points towards the need for regular observa-
tions with large spatial coverage.

Synoptic observations of melt pond evolution are only pos-
sible with satellite remote sensing. Optical sensors with an
adequate spatial resolution that operate in the visible (VIS)
and near-infrared (NIR) wavelength regions enable the mon-
itoring of pond water characteristics. The reflected optical
signal from melt ponds without ice cover contains informa-
tion on the pond water, the pond bottom, underlying ice and
skylight reflected at the water surface.

Some studies investigated the potential to map the
bathymetry of melt ponds with optical data in supraglacial
lakes on the Greenland ice sheet. Tedesco and Steinar (2011)
used the model of Philpot (1989) for optically shallow wa-
ter and resampled hyperspectral reflectance measurements
from below the water surface to Landsat and MODIS bands
in order to explore its capability to derive the depth of a
supraglacial lake. Due to the strong absorption of water in
the near infrared, they limited the data range to 450–650 nm
and excluded depth measurements< 1 m “because of the rel-
atively small sensitivity of the reflectance data in the Land-
sat and MODIS blue and green bands to shallow waters”
(Tedesco and Steiner, 2011). In comparison with shallow
water sonar measurements, they underestimated depth by
−23.7% and −42.7% for Landsat bands 1 and 2, respec-
tively. Legleiter et al. (2014) used hyperspectral remote sens-
ing reflectance measurements above the water surface to map
the bathymetry of supraglacial lakes and streams. They used
an optimal band ratio analysis to find suitable band combina-
tions for calibrating an empirical model based on field mea-
surements on the Greenland ice sheet. A model based on two
bands in the yellow–orange wavelength region resulted in an
R2 of 0.92 and a standard error of 0.47 m for depths rang-
ing between 0.31 and 10.45 m. While this accuracy may be
sufficient for glacial lakes, the maximum depth of ponds on
sea ice is restricted by its thickness and therefore seldom ex-
ceeds 1 m (e.g., Morassutti and Ledrew, 1996; Perovich et al.,
2009).

The color of melt ponds on sea ice ranges from bright blue
to almost black and is primarily defined by the scattering
and, to a lesser degree, by the absorption characteristics of
the pond bottom (Lu et al., 2016, 2017). Different radiative
transfer models for melt ponds on sea ice exist, but their ca-
pability to derive pond depth varies. Lu et al. (2016, 2017)
developed a two-stream radiative transfer model to retrieve
pond depth and the thickness of the underlying ice from RGB
images but did not find a clear relationship between simu-
lated and measured pond depth using the data from Istomina
et al. (2016). To our knowledge, the most accurate model is
the one presented in Malinka et al. (2018) resulting in an R2

of 0.62 (N = 26) for in situ pond depths between 6 and 50 cm
acquired under different illumination conditions. Their ana-
lytical two-stream radiative transfer model links the spectral
albedo of ponds between 350 and 1300 nm at various sky
conditions to pond depth and transport scattering coefficient

and thickness of the bottom ice. Fitting these parameters dur-
ing inverse computation of in situ datasets from three field
campaigns accurately reproduced in situ albedo spectra (rela-
tive root mean square difference, rRMSD< 1.5 %), but pond
depth retrieval was more uncertain (rRMSD= 65 %).

We hypothesize that instead of using the entire spectrum,
selecting bands in the near-infrared wavelength region im-
proves the retrieval of pond depth on sea ice from opti-
cal data. The penetration depth of light into water is high-
est in the blue region of the electromagnetic spectrum and
decreases with increasing wavelength; i.e., with increasing
wavelength the influence of the water column’s attenuation
on the optical signal increases (Pope and Fry, 1997). Map-
ping the bathymetry of supraglacial lakes with a two-band
model is challenging because the attenuation of water is
wavelength dependent and the range of depths is wide. For
shallow ponds on sea ice, Morassutti and Ledrew (1996)
stated that the influence of water absorption on the pond
albedo increases towards the NIR wavelength region. Lu
et al. (2016) found that pond albedo significantly depends
on pond depth in the wavelength region between 600 and
900 nm. In this paper, we therefore present a linear pond
depth model for Arctic sea ice based on the absorption of
near-infrared light in water from hyperspectral optical mea-
surements under clear sky conditions.

2 Methods

We use spectral data of bare ice surfaces to simulate melt
pond spectra for model development and validate the model
with in situ melt pond measurements acquired during RV Po-
larstern cruise PS106 in summer 2017.

2.1 Observational data

We used two instrument setups for the acquisition of opti-
cal data. For most measurements, we used a combination
of two Ocean Optics STS-VIS spectrometers (Ocean Op-
tics Inc., USA): one spectrometer pointing downwards and
equipped with a 1◦ fore optic, the other pointing upwards and
equipped with a cosine collector. Both instruments cover the
wavelength region from ∼ 340 to ∼ 820 nm with a spectral
resolution of 3.0 nm (Ocean Optics, 2019). We used a Lab-
sphere Spectralon® 99 % diffuse reflectance standard (Lab-
sphere Inc., USA) as white reference and applied the data
from the second spectrometer to correct the reflectance spec-
tra for changes in downwelling irradiance. For each mea-
surement, we computed the average of 30 individual spectra.
Both instruments were mounted on the end of a 1 m long pole
to avoid influences of the polar clothes on the measurements.
We also attached a camera to the setup to take photographs
of each measurement site (Fig. 1).

Some of the data used in this study were acquired within
the scope of an angle-resolving bidirectional reflectance dis-
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tribution function (BRDF) experiment. For these measure-
ments, we used an Ibsen Freedom VIS FSV-305 spectrom-
eter (Ibsen Photonics A/S, Denmark) with a spectral reso-
lution of 1.8 nm covering the wavelength range from ∼ 360
to ∼ 830 nm (Ibsen Photonics, 2019). The spectrometer was
equipped with an optical fiber and a 1◦ fore optic that were
attached to a field goniometer (Fig. 2). We used the above-
mentioned Spectralon® panel as white reference after each
azimuthal scan and computed an average reflectance from 20
spectra.

The quantity measured with both spectrometer setups is
the remote sensing reflectance (Rrs; sr−1) above the water
surface:

Rrs =
Lu

Ed
, (1)

where Lu is upwelling radiance – W (m2 nmsr)−1 – mea-
sured by the downward-pointing sensor and Ed is down-
welling irradiance – W (m2 nm)−1 – which is derived from
the Spectralon® measurement as

Ed =
LS ·π

RS
, (2)

whereRS is the isotropic reflectance of the Spectralon® panel
and LS is a radiance measurement – W (m2 nmsr)−1 – of the
Spectralon® panel.

2.1.1 Ice spectra

On 15 June 2017, we used the Ocean Optics setup to col-
lect spectra from three bright and one dark bare ice surfaces
(Gege et al., 2019) that were missing the typical surface scat-
tering layer (Fig. 1a, b). We therefore assume that their opti-
cal properties are comparable to pond bottoms. Illumination
was diffuse and stable which was indicated by the negligible
standard deviation of the 30 spectra contained in one mea-
surement (Fig. 1c).

On 2 July 2017 between 00:35 and 01:18 LST, we per-
formed 12 nadir measurements of a bare ice surface, likewise
missing a surface scattering layer (Fig. 2a), under clear sky
conditions and a mean solar zenith angle of 74.89◦ with the
Ibsen setup (Gege and König, 2019). Here we use the aver-
age spectrum. The large standard deviation may be attributed
to surface metamorphism during the measurement (Fig. 2b).

2.1.2 Pond measurements

On 10 June 2017, we collected 49 melt pond spectra (Gege
et al., 2019) and corresponding pond depths in three melt
ponds. Two of the ponds had a bright blue color, while the
third one was very dark, which is also apparent in Fig. 3. The
pond site was located in a ridged area, and ice thickness mea-
surements from 14 June 2017 showed that ice thickness was
≥ 0.9 m below the bright ponds and ≤ 0.5 m below the dark
pond, which indicates that the bright ice is older. We presume

that the dark ice may have been a refrozen lead. However, no
ice cores were analyzed to determine the respective ice types.

The bottoms of the bright ponds were mostly smooth and
solid but also featured a few cracks and highly scattering
areas that were very porous. The dark pond bottom was
more heterogeneous and featured cracks and areas that were
porous and riddled with holes (Fig. 4).

At each pond, we referenced the Ocean Optics spectrome-
ters using the Spectralon® panel before data acquisition. We
performed spectral measurements from the edge of the pond
or waded through the pond avoiding shading. We did not
observe any wind-induced disturbances of the water surface
and waited for the water surface to settle before performing
measurements inside the ponds. All measurements were per-
formed under clear sky conditions between 12:23 LST and
14:43 LST and corresponding solar zenith angles between
58.90 and 61.04◦. Directly after each spectral measurement,
we used a folding ruler to measure pond depth at the same
location. Depths ranged between 6 and 25 cm with an aver-
age of 17.60 cm. Figure 5 illustrates the melt pond spectra
and corresponding pond depths.

2.1.3 Data smoothing

Even though the spectra appear smooth at first view, the
hardly visible amount of noise in the data becomes relevant
for calculating derivatives. To smooth the spectra, we there-
fore resampled all spectra to a 1 nm spectral sampling by
linear interpolation and then applied a running average filter
with a width of 5 nm.

2.2 Model development

To develop an approach that does not require knowledge
about on-site ice characteristics, our model must be indepen-
dent from changes in the bottom albedo, i.e., scattering char-
acteristics of the underlying ice. It shall further be applicable
to a wide range of pond depths up to 1.0 m. Because the in
situ melt pond dataset is limited to shallow depths and biased
towards bright blueish ponds, we used the water color sim-
ulator (WASI) to create a spectral library covering different
bottom type mixtures and depths. WASI is a software tool for
the analysis and simulation of deep and shallow water spec-
tra that is based on well-established analytical models (Gege,
2004, 2014, 2015; Gege and Albert, 2006). We used the for-
ward mode of the program WASI-2D (v4.1) to generate li-
braries of melt pond spectra. The procedures are described in
the following.

2.2.1 Simulated data

We used the Ocean Optics bare ice spectra from overcast sky
conditions (Sect. 2.1.1) as pond bottom reflectance.

Analyses of optical properties of water samples showed
only negligible amounts of chlorophyll a, colored dissolved
organic matter and total suspended matter. Moreover, Pod-
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Figure 1. Photos of bright (a) and dark (b) bare ice surfaces and respective reflectance spectra (c). We took the photos from approximately
50 cm (a) and 30 cm (b) above the surface.

Figure 2. Ibsen bare ice measurement setup (a). Spectra used in this study (b) were taken at nadir.
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Figure 3. Overview of measurement sites in the three ponds. Aerial photo: Gerit Birnbaum.

gorny and Grenfell (1996) report that the signal of scattering
in meltwater is overwhelmed by the scattering in the bottom
ice. We therefore defined a pure water column without ad-
ditional absorbing or scattering water constituents and com-
puted remote sensing reflectance in shallow water above the
water surface according to Eq. (2.20b) in Gege (2015):

Rsh
rs (λ)=

(1− σ)(1− σ−L )
n2

w
·

Rsh−
rs (λ)

1− ρu ·Q ·R
sh−
rs (λ)

+Rsurf
rs (λ), (3)

where σ , σ−L and ρu are the reflection factors for Ed and up-
welling radiance (L−u ) and irradiance just below the water
surface. σ and ρu are 0.03 and 0.54, respectively, while σ−L
is calculated from the viewing angle (0◦ for a nadir-directed
sensor). nw is the refractive index of water (≈ 1.33), and Q
is a measure of the anisotropy of the light field in water, ap-
proximated as 5 sr. Rsh−

rs is the remote sensing reflectance
just below the water surface according to Albert and Mobley
(2003):

Rsh−
rs (λ)= R−rs (λ) · [1−Ars,1 · exp{−(Kd(λ)

+ kuW(λ)) · zB}]+Ars,2 ·R
b
rs(λ) · exp{−Kd(λ)

+ kuB(λ)) · zB}, (4)

where Ars,1 and Ars,2 are empirical constants and Kd, kuW,
and kuB describe the attenuation of the water body with depth
zB defined by its absorption and backscattering and the view-
ing and illumination geometry. The first part of Eq. (4) de-
scribes the contribution of the water body and the second
part the contribution of the bottom. R−rs is the remote sensing
reflectance of deep water just below the water surface de-
fined by the absorption and backscattering of the water body

and the viewing and illumination geometry. Rb
rs is the remote

sensing reflectance of the bottom that is defined as the sum of
the fractional radiances of all contributing bottom types de-
fined by their albedos and under the assumption of isotropic
reflection. Rsurf

rs in Eq. (3) is the ratio of radiance reflected
by the water surface and Ed. We set Rsurf

rs to zero; thus, the
last part of Eq. (3) can be ignored. We further used a solar
zenith angle of 60◦, similar to the in situ measurements, and
a viewing angle of 0◦ (nadir).

We computed linear mixtures of the two measured bottom
albedos in 25 % steps (100 % dark, 0 % bright; 75 % dark,
25 % bright; . . .; 0 % dark, 100 % bright). Using this setup,
we generated a spectral lookup table (LUT) by increasing
pond depth from 0 to 100 cm in intervals of 1 cm, which is
adequate for the great majority of melt ponds on Arctic sea
ice. The final LUT contains 505 spectra (Fig. 6).

2.2.2 Data processing

According to the Beer–Lambert law, the extinction of light
at a certain wavelength in a medium is described by an ex-
ponential function. Here we assume that multiple scattering
in meltwater and (multiple) reflections at the pond surface,
bottom and sidewalls can be neglected to approximate the ra-
diative transfer. Figure 7a illustrates the exponential decrease
in Rrs with water depth at 700 nm for the five different bot-
tom type mixtures. To linearize the effect, we computed the
logarithm of the spectra (Fig. 7b). Lastly, we computed the
first derivative of the logarithmized spectra (Fig. 7c) for each
band by applying a Savitzky–Golay filter using a second-
order polynomial fit on a 9 nm window (The Scipy commu-
nity, 2019b).
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Figure 4. Photos of the small (a) and large (b) bright ponds and the
dark pond (c). Photos: Peter Gege.

We then computed Pearson’s correlation coefficient (r) as
(The Scipy community, 2019c)

r(x,y)=

∑n−1
i=0 (xi − x́)(yi − ý)√∑n−1

i=0 (xi − x́)
2
∑n−1
i=0 (yi − ý)

2
, (5)

where xi and x́ are the depth of the ith sample and the av-
erage depth, yi and ý are the slope of the logarithmized re-
flectance at a certain wavelength of the ith sample and the
average slope of the logarithmized reflectance at a certain
wavelength, and n is the number of samples.

The orange curve in Fig. 8 illustrates the wavelength-
dependent correlation coefficients of the slope of the loga-
rithmized spectra and pond depths in the LUT. We observe an

Figure 5. Average reflectance spectra (a), standard deviation of 30
measurements (b) and corresponding pond depths.

Figure 6. LUT generated with WASI-2D. Each of the five bottom
type mixtures consists of 101 spectra (0 to 100 cm in 1 cm steps).

almost perfect negative correlation in bands between 700 and
750 nm. We performed the same processing for the simulated
spectra as for the in situ pond spectra. The blue curve in Fig. 8
illustrates the wavelength-dependent correlation coefficients
of measured pond depth and the slope of the logarithmized in
situ spectra. We likewise observe strong negative correlations
in the wavelength region around 700 nm.

To investigate the similarity of the dark and bright ice
spectra, we normalized both bottom spectra at 710 nm and
found a high spectral similarity between ∼ 590 and ∼
800 nm (Fig. 9). Consequently, the slope of the logarithmized
spectra is widely independent from the chosen bottom albedo
in this wavelength region. Assuming that this also applies to
ice spectra recorded under clear sky conditions, we used the
Ibsen bare ice measurement to develop a model for clear sky
conditions accordingly.

The Cryosphere, 14, 2567–2579, 2020 https://doi.org/10.5194/tc-14-2567-2020



M. König and N. Oppelt: A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data 2573

Figure 7. Processing of spectral data exemplified for λ= 700 nm.

Figure 8. Wavelength-dependent correlation coefficients of pond
depth with slope of log-scaled spectra for in situ measurements and
simulated spectra.

2.2.3 Linear model

Due to the strong negative correlation in the simulated as well
as in the measured data, we chose the slope of the logarith-
mized spectrum at 710 nm (r =−1.0 and −0.86 for simu-
lated and in situ data, respectively) to develop a simple lin-
ear model. We used scikit-learn’s LinearRegression function
(Pedregosa et al., 2011) to fit a linear model to the simulated
data with the Ibsen bare ice spectrum as bottom albedo using
the method of ordinary least squares.

We found that the solar zenith angle affects the slope and
y intercept of the linear model. Because the model should be
applicable to a wide range of solar zenith angles, we imple-
mented a second model to derive the slope and y intercept
of the linear model for various solar zenith angles. We used
WASI to generate spectral libraries for different solar zenith
angles (0, 15, 30, 45, 60, 75, 90◦) and found that the result-
ing change in slope and y intercept can each be described by
an s-shaped curve. We used SciPy’s optimize.curve_fit func-
tion (The Scipy community, 2019a) to fit generalized logistic
functions (Richards, 1959) into the data. Using these func-

tions, the model’s slope and y intercept can be computed for
different solar zenith angles (Fig. 10).

The model is

z= a (θsun)+ b (θsun)

[
∂ logRrs(λ)

∂λ

]
λ=710 nm

, (6)

where z is the predicted pond depth and θsun is the solar
zenith angle. a and b are offset and slope as follows:

a (θsun)=−20.6+
0.79

0.8+ 5.8exp(−0.13 · θsun)
1
2
(cm) (7)

and

b (θsun)=−1619.8

+
94743.64

255.3+ 7855exp(−1.3 · θsun)
1

19.9
(cm). (8)

We further computed the coefficient of determination (R2) as
recommended by Kvålseth (1985) as

R2(y, ŷ)= 1−
∑n−1
i=0 (yi − ŷi)

2∑n−1
i=0 (yi − ý)

2
, (9)

where yi and ŷi are the true (simulated) and predicted val-
ues of the ith sample, n is the number of samples, and
ýi =

1
n

∑n−1
i=0 yi (Pedregosa et al., 2011; scikit-learn devel-

opers, 2018). In addition, we also computed the root mean
square error (RMSE) as

RMSE(y, ŷ)=

√
1
n

∑n−1
i=0

(yi − ŷi)
2 (10)

and the normalized RMSE (nRMSE) as

nRMSE(y, ŷ)=
RMSE(y, ŷ)

ý
· 100. (11)

For the model described above, we obtained a perfect corre-
lation (r = 1.0; probability value p = 8.9× 10−172), an R2

of 1.0 and an RMSE of 0.56 cm (nRMSE= 1 %) on the sim-
ulated training data.
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Figure 9. Quotient of bright and dark bare ice spectra (a) and Rrs of bright ice and dark ice normalized at 710 nm (b).

Figure 10. Change in model’s y intercept and slope with solar
zenith angle. Generalized logistic function fit into the simulated
data.

3 Results

We validated the model with the in situ melt pond dataset
from dark and bright ponds (Sect. 2.1.2) and observed a
strong linear and statistically significant correlation (r =
0.86; p = 2.36× 10−15; R2

= 0.65; RMSE= 3.29 cm and
nRMSE= 19 %). Most of the points scatter along the 1 : 1
line except for one point whose actual depth is 10 cm and
predicted depth is 18 cm (Fig. 11a). The externally studen-
tized residual (t) (Kutner et al., 2004; Seabold and Perktold,
2010) classifies this point as an outlier (t > 3), and there-
fore we excluded this point from the dataset. The removal
of the outlier improves all performance measures (r = 0.89;
p = 4.34×10−17; R2

= 0.68; RMSE= 3.11 cm; nRMSE=
18 %). The slope of the line of best fit increases to 0.9686,
and the intercept indicates an offset of 0.878 cm. If we fur-
ther correct for the offset, R2 increases to 0.74 and RMSE
improves to 2.81 cm (nRMSE= 16 %). The blue line is the

line of best fit between actual and predicted pond depths. The
linear equation of the line of best fit indicates that the model
results in a small offset and a slope close to 1.0.

4 Discussion

Our results show that a simple model based on the derivative
of the log-scaled Rrs at 710 nm allows water depth retrieval
of dark and bright melt ponds on Arctic sea ice. The model
training on simulated data and the independent testing using
in situ measurements prove the applicability of our approach.

4.1 Observational data

4.1.1 Spectral measurements

Measurements of albedo have a long tradition in Arctic re-
search (e.g., Grenfell, 2004; Nicolaus et al., 2010; Perovich,
2002; Perovich and Polashenski, 2012) because albedo is an
important quantity in climate models and can be measured
with a single irradiance detector. In this study, we conducted
measurements ofRrs because our model should be applicable
to remote sensing data, and the quantity measured in optical
remote sensing is radiance. It is only appropriate to derive an
accurate radiance directly from the albedo of a Lambertian
surface. This assumption, however, is not valid for specu-
lar water surfaces and may easily introduce errors. Moras-
sutti and Ledrew (1996) identified changing Ed as the main
error affecting reflectance data recording. To tackle this is-
sue, we used a combination of two spectrometers described
in Sect. 2.1.

Field spectroscopy is influenced by external factors and
the measurement design itself. In contrast to ruler measure-
ments, the spectrometer acquires information of an area. To
ease comparison and limit the influence of spatial hetero-
geneities, we used a fore optic with a 1◦ field of view to min-
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Figure 11. Measured versus predicted depth for the entire dataset (a) with outlier removed and offset correction (b).

imize the footprint (∼ 1 cm at a height of 60 cm). However,
holding the instruments perfectly still for a period of several
seconds is challenging, and even small changes in the posi-
tion result in changes in the viewing angle, which increases
the footprint of a measurement. For future campaigns, we
therefore recommend using a gimbal to minimize the influ-
ence of roll and pitch of the handheld spectrometer setup.
Another issue might have been reflections of the black spec-
trometer housings on the water surface possibly contributing
to the offset between modeled and measured data.

Different refraction indices of wet and dry surfaces may
cause part of the observed offset. Furthermore, using bottom
albedos obtained from dry surfaces in WASI introduce a sys-
tematic offset. However, it remains unclear if the ice surface
used to compute the spectral library was wet or dry.

Some of the scattering may be introduced by reflectances
at the water surface, which we did not consider in the
LUT computation because the necessary values for the
parametrization are unknown. Another influence may be the
different solar zenith angles between bare ice and pond mea-
surements. The potential influence of the mentioned factors
may be worth further examination to refine the model.

4.1.2 Pond depth measurements

Measuring the depth of a pond may appear trivial, but the bot-
tom of a pond is frequently not flat and solid but can be slushy
or riddled with holes. In addition, performing two measure-
ments with a spectrometer and a folding ruler at the exact
same location is difficult. We therefore recommend using a
laser pointer at the end of the pole for orientation. These un-
certainties explain some of the scattering in Fig. 11. Inter-
pretation of field photographs of the pond bottoms, however,
did not indicate any systematic errors associated with pond
bottom characteristics.

4.2 Model validity

The majority of the field data used in this study are from
bright blue ponds (n= 38), while fewer measurements were
obtained in dark ponds (n= 11). We addressed this limited
diversity of field data by computing a comprehensive LUT.
The model generates accurate results (RMSE= 2.81 cm) on
the entire in situ test dataset and explains a large portion
of its variability (R2

= 0.74). On the dataset from the dark
pond, R2 is less than 0 and nRMSE is 35 %. The reason
is that measurements from the dark pond are very shallow
(6–14 cm), and, thus, relative errors are larger compared to
the deeper bright ponds. In addition, the number of data
points is very small, and single outliers have a strong in-
fluence on performance metrics. The range of scattering
around the 1 : 1 line (Fig. 11), however, is similar for the data
from dark (RMSE= 3.05 cm) and bright (RMSE= 2.49 cm)
ponds, proving that the model’s accuracy is similar for both
subsets.

The data used in this study are the most comprehensive
set of Rrs and depth measurements from melt ponds on Arc-
tic sea ice acquired under clear sky conditions. The dataset,
however, originates from only three ponds, covering a limited
variability of bottom characteristics and pond depth. More
validation data are desirable to explore the model capabili-
ties to derive pond depth from deep dark and shallow bright
ponds, for pond depth> 25 cm, and for a wider range of bot-
tom types and solar zenith angles. In addition, more tests are
necessary to explore how the model performs when the as-
sumptions formulated in Sect. 2.2 are violated, e.g., when
algae, suspended matter or yellow substances are abundant
in the pond water or in the ice below the pond.

We successfully developed a model to accurately derive
the depth of melt ponds on Arctic sea ice without having to
consider the bottom ice characteristics of the pond; yet, we
assume that we cannot entirely avoid any influence. When
fitting a model to the Ocean Optics LUT (Fig. 7c), we ob-
serve scattering around the 1 : 1 line resulting in an RMSE
of 1.88 cm (nRMSE= 4 %). In the Ocean Optics LUT, how-
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Figure 12. Measured versus predicted water depth for data acquired
under overcast conditions on 14 June 2017.

ever, the only variable parameter is bottom type mixture; we
therefore conclude that the scattering results from the dif-
ference in bottom albedo. Consequently, bottom albedo may
affect the model, which may explain some of the scattering
in the test data.

Optical satellite data can only be obtained under clear
sky conditions, but remote sensing images are likewise ac-
quired from helicopters and unmanned aerial vehicles. These
platforms also operate under diffuse illumination conditions,
which are frequent in the Arctic. To check the validity of
the model for overcast conditions, we applied the clear sky
model to data from the same area acquired on 14 June 2017
during diffuse illumination conditions. The performance,
however, is low (Fig. 12) and shows a moderate correla-
tion (r = 0.64; p = 2.6× 10−4), an R2 < 0 and an RMSE
of 12.76 cm (nRMSE= 63 %). We attribute the low perfor-
mance to the different illumination conditions. Under diffuse
conditions, a considerable part of the reflectance measured
above the water surface is due to the reflection of clouds at
the water surface. Further, the optical path length of the in-
coming light in water changes under overcast conditions.

We therefore conclude that the present model is only valid
for clear sky conditions. The model accounts for the influ-
ence of varying solar zenith angles, but field data were lim-
ited to solar zenith angles between 58.9 and 61◦. To enlarge
its validity range, more field data covering different weather
and illumination conditions are necessary.

5 Conclusions

We present a linear model slope-based approach in the spec-
tral region around 710 nm to retrieve the depth of melt ponds
on Arctic sea ice. However, the model is not restricted to Arc-
tic sea ice and may be tested in shallow supraglacial ponds as
well. The model calibration on simulated data and indepen-
dent validation on in situ data prove the applicability and ro-

bustness of our approach. The final model is valid for hyper-
spectral data (Rrs) acquired under clear sky conditions and
addresses varying solar zenith angles.

We used WASI to generate a LUT of pond spectra for
five different bottom albedos and pond depths between 0 and
100 cm assuming clear pond water. We found that the slope
of the log-scaled Rrs at 710 nm is widely independent from
the bottom albedo and highly correlated with pond depth.
Thus, we applied a linear model to retrieve pond depth from
Rrs in this wavelength region. The slope and y intercept of
the linear equation, however, change with the solar zenith an-
gle for which other models do not account for (e.g., Legleiter
et al., 2014; Tedesco and Steiner, 2011). To overcome this
limitation, we trained linear models for seven solar zenith
angles in between and found that a general logistic function
is able to describe the change in slope and y intercept for
each solar zenith angle. The inputs for our model, therefore,
are the slope of the log-scaled Rλ=710

rs and sun zenith angle.
We successfully validated the model on in situ measurements
(r = 0.89; R2

= 0.74; RMSE= 2.81 cm; nRMSE= 16 %)
with solar zenith angles between 58.9 and 61◦ and observed
similar accuracies for bright and dark ponds.

The next step is the transfer to hyperspectral airborne and
satellite systems, e.g., EnMAP (Guanter et al., 2016), to en-
able a synoptic view on the evolution of melt ponds on Arc-
tic sea ice. One constraint may be the size of melt ponds,
which requires a high spatial resolution. We further assume
that the additive signals of the atmosphere and reflections of
skylight at the water surface may complicate the retrieval of
pond depth with remote sensors. In addition, the sensitivities
and band settings of remote sensors also affect the transfer-
ability of our approach. Here, further testing and comprehen-
sive ground truth data are necessary. In these regards, we ex-
pect the Multidisciplinary drifting Observatory for the Study
of Arctic Climate (MOSAiC) expedition to result in further
improvements.
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